
Evolutionary Planning in Latent Space

Thor V. A. N. Olesen1, Dennis T. T. Nguyen1, Rasmus B. Palm1,
and Sebastian Risi1,2(B)

1 IT University of Copenhagen, Copenhagen, Denmark
2 modl.ai, Copenhagen, Denmark

Abstract. Planning is a powerful approach to reinforcement learning
with several desirable properties such as sampling efficiency. However,
it requires a world model, which is not readily available in many real-
life problems. In this paper, we propose to learn a world model that
enables Evolutionary Planning in Latent Space (EPLS). We use a Vari-
ational Auto Encoder (VAE) to learn a compressed latent representa-
tion of individual observations and extend a Mixture Density Recurrent
Neural Network (MDRNN) to learn a stochastic, multi-modal forward
model of the world used for planning. We use the Random Mutation Hill
Climbing (RMHC) algorithm to find a sequence of actions that maximize
expected reward in this learned model of the world. We demonstrate how
to build a world model by bootstrapping it with rollouts from a random
policy and iteratively refining it with rollouts from an increasingly accu-
rate planning policy using the learned world model. After few iterations,
our planning agents exceed standard model-free reinforcement learning
approaches, which demonstrates the viability of our approach. Code to
reproduce the experiments is available at https://github.com/two2tee/
WorldModelPlanning and videos at https://youtu.be/3M39QgeF27U.

Keywords: World models · Evolutionary planning · Iterative
training · Model-based reinforcement learning

1 Introduction

Planning by searching for action sequences that maximize expected reward is a
powerful approach to reinforcement learning problems, which has recently lead
to breakthroughs in complex domains such Go, Shogi, Chess, and Atari games
[21–23]. To plan, the agent needs access to a model of the world which it can
use to simulate the outcome of actions, to determine which course of action is
best. Planning using a model of the world also allows you to introspect what the
agent is planning and why it thinks certain actions are preferable. It even allows
you to add constraints or change the objective at runtime.

In games, these world models are readily available and given by the rules of
the game. However, for many real-world problems like driving a car, they are
not available.

T. V. A. N. Olesen and D. T.T. Nguyen—Contributed equally

c© Springer Nature Switzerland AG 2021

P. A. Castillo and J. L. Jiménez Laredo (Eds.): EvoApplications 2021, LNCS 12694, pp. 522–536, 2021.

https://doi.org/10.1007/978-3-030-72699-7_33

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-72699-7_33&domain=pdf
https://github.com/two2tee/WorldModelPlanning
https://github.com/two2tee/WorldModelPlanning
https://youtu.be/3M39QgeF27U
https://doi.org/10.1007/978-3-030-72699-7_33

Evolutionary Planning in Latent Space 523

Fig. 1. Planed trajectories using evolutionary planning in the latent space of a learned
world model.

In problems where a world model is not available, one can instead use model-
free reinforcement learning, which learns a policy that directly maps from the
environment state to the actions that maximize expected reward. However, these
approaches often require many samples from the real environment, which is often
expensive to obtain when learning the statistical relationship between states,
actions, and rewards. That is especially true if the environment requires complex
sequences of actions to observe any rewards.

Alternatively, a learned world model is used to find an optimal policy, which
is the approach taken in this paper. This is known as model-based reinforce-
ment learning. Learning a model of the world requires fewer samples of the
environment than learning a policy directly from the state space since it can
use supervised learning methods to predict the environment state transitions,
regardless of the reward signal being sparse or not. Several models have been
proposed for learning world models [6,8,21].

In this paper, we propose an extension to the Mixture Density Recurrent
Neural Network (MDRNN) model [6], which makes it suitable for planning, and
demonstrate how to do evolutionary planning in latent space by using the learned
world model. See Fig. 1 for examples of planned trajectories and Fig. 2 for an
overview of the proposed method.

We further show how to iteratively improve the world model by using the
existing world model to do the planning and using the planned policy to sample
better rollouts of the environment, which, in turn, are used to train a better
world model. This process is bootstrapped by using an initial random policy.
Given few iterations, we obtain results that outperform standard model-free
approaches, demonstrating the viability of the approach.

2 Related Work

2.1 Planning

In planning, an agent uses a model of the world to predict the consequences
of its actions and select an optimal action sequence accordingly. Planning is a
powerful technique that has recently lead to breakthroughs in complex domains
such as Go, Chess, Shogi, and Atari [21–23].

524 T. V. A. N. Olesen et al.

Monte-Carlo Tree Search (MCTS) is a state-of-the-art planning algorithm
for discrete action spaces, which iteratively builds a search tree that explores
the most promising paths using a fast, often stochastic, rollout policy [3].

Rolling Horizon Evolutionary Algorithms (RHEA) encode individuals as
sequences of actions and uses evolutionary algorithms to search for optimal
trajectories. Rolling Horizon (RH) refers to how the first action in a plan is
executed before the plan is reevaluated and adjusted, looking one step further
into the future and slowly expanding the horizon [5,10,11,18]. RHEA naturally
handles continuous action spaces. Tong et al. [24] show how to learn a prior
for RHEA by training a value and policy network. The value network reduces
the required planning horizon by estimating the rewards of future states. The
policy network helps initialize the population of planning action trajectories to
narrow the search scope to a near-optimal local action policy-subspace. In our
approach, we use a randomly initialized set of planning trajectories and improve
them iteratively through evolution.

Random Mutation Hill-Climb (RMHC) is a simple and effective type of evo-
lutionary algorithm that repeats the process of randomly selecting a neighbour
of a best-so-far solution and accepts the neighbour if it is better than or equal to
the current best-so-far solution. This local search method starts with a solution
and iteratively tries to improve it by taking random steps or restarting from
another region in the policy space.

Planning approaches that rely on imperfect models may plan non-optimal
trajectories. The authors of [17] suggest incorporating uncertainty estimation
into the forward model to improve the agent. In general, planning under uncer-
tainty has been extensively studied [2,12,16].

2.2 Learning World Models

If a world model is unavailable, it is learned from environment observations.
Using such a model to find a policy is generally known as model-based Rein-
forcement Learning (RL).

World Models [6] introduces a stochastic recurrent world model learned from
environment observations under an initially random policy. The model uses a
Variational Auto-Encoder (VAE) to encode pixel inputs into a low dimensional
latent vector. A recurrent neural network (RNN) is trained to predict sequences
of latent states using a Gaussian Mixture Model to capture the uncertain and
multi-modal nature of the environment. Notably, the authors do not use this
world model for planning, but rather for training a simple single-layer linear
policy network.

In MuZero [21], the authors do planning with a learned model in video and
board games by using tree-based search (MCTS) to enable imitation learning
with a policy network.

In PlaNet [8], the authors have shown it is possible to do online planning
in latent space using an adaptive randomized algorithm on a recurrent state-
space model (SSM) with a deterministic and stochastic component and a multi-
step prediction objective. PlaNet [8] is the approach that is most similar to

Evolutionary Planning in Latent Space 525

the work presented here (i.e., online planning on a learned model). However, it
uses a rather complicated dynamics model and planning algorithm. In Dreamer
[7], the authors use the PlaNet world model but no longer do online planning.
Instead, their Dreamer agent uses an actor-critic approach to learn behaviors
that consider rewards beyond a horizon. Namely, they learn an action model
and value model in the latent space of the world model. Thus, their approach
is similar to World Models [6] where they plan on a learned model by training
a policy inside the simulated environment with backpropagation and gradient
descent, instead of evolution. The novel part is using a value network to estimate
rewards beyond a finite imagination horizon. Also, World Models [6] does not
show how to do planning on a fully learned model, since the reward signal is
not learned in their model. Finally, MuZero [21] relies on extensive training data
and access to unrealistic GPU resources, which may not be feasible in practice.

In another related approach, Neural Game Engine [1], the authors show how
to learn accurate forward models from pixels that can generalize to different size
game levels. However, their methods currently only work on grid-based world
games. The authors argue it does not work as a drop-in replacement for the kind
of world models we need in real-life environments. For this purpose, the authors
recommend looking into some of the previously presented methods that learn a
latent dynamics model with a 2D state-space model (SSM) like shown in PlaNet
and Dreamer that both use a Recurrent State Space Model (RSSM).

3 Approach

We use a model-based RL approach to solve a continuous reinforcement learning
control task. We achieve this through online evolutionary planning on a learned
model of the environment. Our solution combines a world model [6] with rolling
horizon evolutionary planning [18]. See Fig. 2 for an overview.

Similar to the original world model [6], our model uses a visual sensory com-
ponent (V) to compress the current state into a small latent representation. The
memory component (M) is extended to predict the next latent state, the expected
reward, and whether the environment terminates. In the original world model,
the decision-making component uses a simple learned linear model that maps
latent and hidden states directly to actions at each time step. In contrast, EPLS
uses a random mutation hill-climbing (RMHC) algorithm as the decision-making
component that exploits M to do online planning in latent space.

3.1 Learning the World Model

The visual component (V) is implemented as a convolutional variational
autoencoder (ConvVAE), which learns an abstract, compressed representation
zt ∈ R

64 of states (i.e., frames) st ∈ R
64×64×3 using an encoder and decoder as

shown in Fig. 3.
The VAE encoder is a neural network that outputs a compressed representa-

tion of a state s (i.e., frame) using a deep convolutional neural network (DCNN)

526 T. V. A. N. Olesen et al.

Fig. 2. Evolutionary Planning in Latent Space (EPLS). The raw observation is
compressed by V at each time step t to produce a latent vector zt. RMHC does planning
by repeatedly generating, mutating, and evaluating action sequences a0, ..., aT in the
learned world model, M where T is the horizon. The learned world model, M, receives
an action at, latent vector zt and hidden state ht and predicts the simulated reward rt,
next latent vector zt+1, and next hidden state ht+1. The predicted states are used with
the next action as inputs for M to let the agent simulate the trajectory in latent space.
The first action of the plan with the highest expected total reward in the simulated
environment is executed in the real environment.

Fig. 3. Flow diagram of a Variational Autoencoder (VAE). The VAE learns to encode
frames into latent vectors by minimizing the pixel-wise difference between input frames
and reconstructed frames (i.e., L2 or MSE) generated by decoding the latent vectors.

Evolutionary Planning in Latent Space 527

of four stacked convolutional layers and non-linear relu activations to compress
the frame and two fully-connected (i.e., dense) layers that encode the convolu-
tional output into low dimensional vectors μz and σz:

encoder : s ∈ R
64×64×3 → μz ∈ R

64, σz ∈ R
64 . (1)

The means μz and standard deviations σz are used to sample a latent state z
from a multivariate Gaussian with diagonal covariance:

z ∈ R
64 ∼ N (z|μz, σz) . (2)

The decoder is a neural network that learns to decode and reconstruct the
state (i.e., frame) s given the latent state z using a deep CNN of four stacked
deconvolution layers:

decoder : z ∈ R
64 → s′ ∈ R

64×64×3 . (3)

Each convolution and deconvolution layer uses a stride of two. Convolutional and
deconvolutional layers use relu activations. The output layer maps directly to pixel
values between 0 and 1. The VAE is trained with the standard VAE loss [13].

We extend the memory component (M) of [6] to output an expected
reward r and a binary terminal signal τ to obtain a fully learned world model
that supports planning entirely in latent space. M is an LSTM with 512 hidden
units, which jointly models the next latent state zt, reward rt, and whether or
not the environment terminates, τt,

p(zt, rt, τt|ht−1) = p(zt|ht−1)p(rt|ht−1)p(τt|ht−1) . (4)

The LSTM hidden state ht depends on the previous hidden state ht−1,
the current action at, and the current latent state zt such that ht =
LSTM(zt, at, ht−1).

Most complex environments are stochastic and multi-modal so p(zt|ht−1) is
approximated as a mixture of Gaussian distribution (MD-RNN). The output of
the MDRNN are the parameters π, μ, σ of a parametric Gaussian mixture model
where π represents mixture probabilities:

p(zt|ht−1) =
5∑

k=1

πkN (zt|μk, σk) , (5)

where π, μ and Σ are linear functions of ht−1 and each mixture component is a
multivariate Gaussian distribution with diagonal covariance.

We model the reward r using a Gaussian with a fixed variance of one such
that

p(rt|ht−1) = N (rt|μτ
t , 1) , (6)

where μτ
t is a linear function of ht−1. Finally we model the terminal state τ using

a Bernoulli distribution,

p(τt|ht−1) = pτt(1 − p)1−τt , (7)

528 T. V. A. N. Olesen et al.

where p = sigmoid(f(ht−1)) is the sigmoid of a linear function of ht−1.
We train M by minimizing the negative log-likelihood of p(zt, rt, τt|ht−1) for

observed rollouts of the environment,

L = − log p(zt, rt, τt|ht−1) = MSE(rt, r̂t)+BCE(τt, τ̂t)+GMM-NLL(zt, ẑt) , (8)

where MSE is the mean squared error, BCE is the binary cross-entropy, GMM-
NLL is the negative log likelihood of a gaussian mixture model, and ẑ, r̂, τ̂ are
the observed latent states, rewards and terminals. The learnable weights and
biases in the different neural network-based modules are all initialized uniformly
by default in PyTorch: U(−√

(k),
√

(k)) with k = 1
in features where in features

is the size of each input sample.

3.2 Evolutionary Planning in Latent Space

Once the world model is trained, it can enable planning (Fig. 4). We use Random
Mutation Hill Climbing (RMHC), which is a simple evolutionary algorithm.
RMHC works by iteratively mutating and evaluating individuals, and letting
the elite be the starting point in the next round of mutation. We use RMHC to
find a sequence of actions that maximize the expected reward as predicted by the
world model. The action sequence length, also known as the horizon, determines
how far into the future the agent plans. Finally, shift buffering is used to avoid
repeating the entire search process from scratch at every time step [4]. In short,
after each planning step, we pop the first action of the action sequence and add
a new random action to the end of the action sequence. This modified plan is
then the starting point for the next planning step.

4 Experiments

We test our approach on the continuous control CarRacing-v0 domain [14], built
with the Box2D physics engine. At every trial, the agent’s driving abilities are
evaluated on a randomly generated track (where randomness affects the number
of track tiles, its layout, and car starting position). Reaching a high score requires
the agent to plan how to make each turn with continuous actions, which makes
it a suitable test domain for our evolutionary latent planning approach. The
environment yields a reward of −0.1 each time step and a reward of +1000/N
for each visited track tile where N is the total number of tiles in the track.
While it is not necessarily difficult to drive slowly around a track, reaching a
high reward is difficult for many current RL methods [6].

Since the environment gives observations as high dimensional pixel images,
these are resized to 64×64 pixels before being used as observations in our world
model. Pixels are stored as three floating-point values between 0 and 1 that
represent each of the RGB channels. The dimension of our latent space is 64
since this yielded better reconstructions than using 32 as in [6]. Actions contain
three numeric components that represent the degree of steering, acceleration,
and braking.

Evolutionary Planning in Latent Space 529

Fig. 4. Planning details. RMHC initializes a random sequence of actions sampled
from the environment and mutates it repeatedly across generations. Each plan is eval-
uated in latent space using the simulated environment where the fitness metric is the
total undiscounted expected reward associated with executing the planning trajectory
in latent space.

Capturing Rollouts. The MDN-RNN and VAE models are trained in a super-
vised manner, and rely on access to a representative dataset of environment roll-
outs for training and testing. Each sample is a rollout in the environment and
consists of a sequence of (state, action, reward, terminal) tuples. States, rewards,
and terminals are produced by the environment when given an action. Initially,
we use a random policy in the environment and record states, rewards, actions,
and terminals in T steps. We use T = 500 in the non-iterative procedure and
T = 250 in the iterative procedure. We found that using T = 250 was sufficient
while speeding up the iterative training procedure.

Non-iterative Training Procedure. The non-iterative training procedure
follows the same approach as presented in the original world model work [6]. To
train the VAE and MDN-RNN, we first collect a dataset of 10,000 rollouts using
a random policy to explore the environment where we record the random action
at executed and the generated observations. The dataset is used to train the VAE
so it can learn an abstract and compressed representation of the environment.
The VAE is trained for 50 epochs with a learning rate of 1e − 4 using the Adam
optimizer.

530 T. V. A. N. Olesen et al.

The MDN-RNN is trained on the 10,000 rollouts where each frame st is
preprocessed by the VAE into a latent vector zt at each time step t. The latent
vectors and actions at are given to the MDN-RNN for it to learn to model the
next latent vector p(zt+1|at, zt, ht) as a mixture of Gaussians and the reward r
and the terminal d. The MDN-RNN consists of 512 hidden units and a mixture
of 5 Gaussians. We train the MDN-RNN for 60 epochs with a learning rate of
1e − 3 using the Adam optimizer. In summary, the full non-iterative training
procedure is shown below:

1. Collect 10,000 rollouts with a random policy
2. Train world model using random rollouts.
3. Evaluate the agent on 100 random tracks using the RMHC planning policy.

Iterative Training Procedure

Once the world model is trained non-iteratively, we can use it in conjunction with
our planning algorithm (RMHC) to do online planning. However, while the agent
may somewhat stay on the road and drive slowly at corners, its performance is
limited by our world model trained with a random policy only. Consequently,
the dynamics associated with well-behaved driving might be underexplored, and
hence our world model may not be able to fully capture this in latent space.

To address this, we used an iterative training procedure as suggested in [6],
in which we iteratively collect rollouts using our agent’s planning policy and
improve our world model (and thus our planning) using the new rollouts. Intu-
itively, we expect planning with the learned world model to yield a better policy
than with a random model. The new rollouts generated during planning are
stored in a replay buffer to overcome catastrophic forgetting by retaining both
old and new rollouts, which allows the MDN-RNN to learn from both past and
new experiences. We collect 500 rollouts per iteration. The iterative training
procedure is as follows:

1. Train MDN-RNN and VAE non-iteratively to obtain baseline model
2. Collect rollouts using RMHC planning policy and add them to the replay

buffer
3. Train the world model using rollouts in replay buffer.
4. Evaluate the agent on 100 random tracks using RMHC planning policy.
5. Go back to (2) and repeat for I iterations or until the task is complete

For both approaches, we found that training the VAE using 10k random
rollouts was sufficient in representing different scenarios of the car racing envi-
ronment across all our experiments. We used RMHC with a horizon of 20, and
the action sequence was evolved for ten generations at every time step t with
shift buffering.

Evolutionary Planning in Latent Space 531

5 Results

5.1 Non-iterative Training

The MDN-RNN serves as a predictive model of future latent z vector that the
VAE may produce and the reward r that the environment is expected to produce.
Thus the rollouts used to train the MDN-RNN may affect its predictive ability
and how well it represents the real environment during online planning. For this
reason, we trained two MDN-RNNs by using the non-iterative training procedure
to obtain a random model and an expert model. The random model is trained on
10,000 random rollouts and acts as our baseline model for all iteratively-trained
models. The expert model trains on 5,000 random rollouts and 5,000 expert
rollouts. The expert rollouts are collected with the pre-trained agent in World
Models [6]. The random rollouts allow the MDN-RNN to learn the consequences
of bad-driving behavior, and the expert rollouts allow it to learn the positive
reward signal associated with expert-driving. The expert model is a reference
model used for comparison that helps determine how well an agent may perform
when the MDN-RNN is trained on a well-representative dataset.

Using the random model, the agent did learn to drive unsteadily around
the track and sometimes plan around sharp corners. However, the agent only
managed to achieve a mean score of 356.20 ± 176.69 with the highest score
of 804. In contrast, using the expert model, the agent managed to obtain a
mean score of 765.17 ± 102.18 with the highest score of 900. The expert rollouts
improved the MDN-RNN’s ability to capture the dynamics of the environment,
which significantly improved the agent’s performance (Fig. 5).

Fig. 5. Total rewards in 100 trials with MDN-RNN trained on 10,000 rollouts using
random policy vs. an MDN-RNN trained on 5000 random and 500 expert rollouts. The
latter yields a much higher total reward due to the dataset containing a rollouts that
exhibit both random and well-behaved driving.

532 T. V. A. N. Olesen et al.

5.2 Iterative Training

Since we cannot rely on access to pre-trained expert rollouts, we have imple-
mented an iterative training procedure that allows the agent to improve its per-
formance over time by learning from its own experiences. Namely, we generate
rollouts by online planning with the RMHC evolutionary policy search method,
which iteratively improve our world model. We investigate if the random baseline
model can improve by using a small number of only 500 rollouts and a sequence
length of 250 experiences trained over ten epochs and five iterations. Figure 6
shows the mean total rewards after each of the five iterations.

Fig. 6. Mean total rewards and standard deviations over 100 trials across five iterations.
The 0th iteration represents the mean total reward before iterative training, but after
training on 10,000 rollouts obtained from a random policy. Notice, using 500 rollouts
(Experiment A) yields a faster training time and a better result compared to experiment
B that uses 10.000 rollouts per iteration.

Already after a single training iteration, the agent managed to get a mean
score of 557.87± 244.97 and peaked at iteration 5 with a mean score of 656.82±
226.67. Despite not beating the expert model, we saw improvements throughout
the iterations, and the agent managed to occasionally complete the game by
scoring a total reward of 900 during benchmarks. While the first iteration yielded
the most significant improvement in total average reward, the following iterations
still improved. The great improvement seen in the first iteration might be due
to the MDN-RNN learning the dynamics of more well-behaved driving from
the agent’s planning policy, which ultimately mitigates the errors made by the
initially random model.

Evolutionary Planning in Latent Space 533

Investigating Different Planning Horizons and Generations. The bench-
marks from iterative training show how refining the world model can affect the
agent’s planning capabilities. Given the best iterative model found after five
training iterations, it is interesting to see how different horizon lengths and max
generations affect the agent’s ability to plan with the iterative model and the
RMHC policy search method.

Both planning parameters are adjusted independently and individually to
see how they affect planning. However, we must keep in mind that the horizon
length and the maximum number of generations are very likely to be highly
correlated. Thus, one should also conduct experiments where both parameters
are adjusted together. Figure 7 shows how typical parameter values used for
evolutionary planning [15] affect the average total reward obtained by planning
with RMHC on a model trained with five iterations across 100 trials.

Fig. 7. Left: max planning generations vs. mean rewards with a horizon of length 20.
Right: Horizon planning length vs. mean reward with a max generation of 10. While a
minimum number of generations and horizon length are necessary for the agent to plan
well, increasing these values further does not increase the performance of the agent.

The baseline number of generations is 10. Reducing this to 5 shows a decrease
in mean total reward, achieving a score of 473.53±280.18. This reduction is likely
due to the agent having less planning time so it is unable to converge to a better
trajectory in a local policy subspace. Increasing the number of generations to 15
increases the mean reward to 707.79±195.44, which is not surprising since it gives
the agent more planning time. However, increasing the number of generations
further did not improve the results. Presumably, this may imply that the agent
has converged to a locally optimal trajectory in the simulated environment after
being evolved 15 generations.

The results when varying the horizon are shown in Fig. 7, right. The baseline
horizon length is 20. Reducing this value to 5 resulted in poor planning and
yielded a mean score of 31.91±40.54. Seemingly, a short horizon exploits a more
certain near-future but does not bring much information for long-term planning
of a trajectory associated with well-behaved driving. Consequently, this kind of
short-sighted agent may not act in time before driving into the grass. As we

534 T. V. A. N. Olesen et al.

increase the horizon from 5 to 20, the mean score increases. The agent receives
more information about the car’s trajectory, which allows it to plan accordingly.
However, a horizon beyond 20 does not help the agent, which is likely due to the
increased uncertainty caused by planning too far into the future. The further
the agent plans ahead, the more uncertain the trajectory becomes, which makes
it less relevant to the current situation that the agent must act upon. This is a
problem in most model-based RL approaches, which may be addressed by having
a separate network predict state values beyond the planning horizon [7].

In conclusion, the iterative training procedure significantly improved our ran-
dom baseline model and showed improvement after only one iteration (Table 1).
Additionally, increasing the maximum number of generations to 15 and a hori-
zon of 20 used in our RMHC policy search approach improved the total aver-
age reward obtained across 100 random tracks (Fig. 7). However, increasing the
parameter values more than this yields diminishing returns, and a slight decrease
in total reward. This may be due to the model’s inability to predict far into the
future when using a high horizon or the planning trajectory having converged
when using a large number of generations. Notice, we do not dynamically adjust
the horizon and number of generations during iterative training but keep them
fixed during all five iterations. Instead, we compare different combinations of
parameters across whole runs of five iterations. To sum up, our results show it is
possible to beat traditional model-free RL methods with an evolutionary online
planning approach, although we are not yet able to consistently beat or match
the learned expert model presented in World Models [6].

6 Discussion and Future Work

While the agent reaches a decent score, it does fail occasionally. It usually hap-
pens when the agent is unable to correct itself due to loss of friction during turns
at sharp corners with high speed. Compared to the expert model that enacts con-
servative driving-behavior, the current iterative model prefers more risky driving
at high speed. Possibly, the expert policy has learned to slow down at corners,

Table 1. CarRacing-v0 approaches with mean scores over 100 trials. Our approaches
are shown in bold.

Methods Mean scores

DQN [19] 343 ± 18

Non-iterative random model 356± 177

A3C (Continuous) [9] 591 ± 45

Iterative model (5 iterations, 15 gen., 20 horizon) 708± 195

Non-iterative - expert model 765± 102

World model [6] 906 ± 21

Deep neuroevolution [20] 903 ± 72

Evolutionary Planning in Latent Space 535

which helps maximize the reward. On the other hand, our planning agent does
not seem to have explored sufficient rollouts of this kind to make the MD-RNN
learn to associate higher rewards with slower driving when approaching corners.

Another issue occurs when the agent approaches the right corners. In many
cases, the agent can complete right corners though there are times where the
agent does not know whether to turn or not. In these scenarios, the agent usu-
ally brakes or slows down while trying to navigate the race track in a sensible
direction. This phenomenon is likely due to the right turns being underrepre-
sented in the generated tracks that are biased towards containing mainly left
turns. Consequently, the MDN-RNN is unable to represent right turns in the
simulated environment compared to other frequently occurring segments of the
track. Arguably, both issues are resolved by running more iterative training iter-
ations. However, it also depends on how often the issues arise in the generated
rollouts. Interestingly, the issues occurred more often in the random model com-
pared to the iterative model, which indicates that the iterative training procedure
can help improve the world model.

Acknowledgments. We would like to thank Mathias Kristian Kyndlo Löwe for help-
ing us with computational infrastructure. A special thanks go to Corentin Tallec and
his team for providing the PyTorch open-source implementation of World Models [6].
We also thank Simon Lucas, Chris Bamford, and Alexander Dockhorn for helpful sug-
gestions. This project was supported by a Sapere Aude: DFF-Starting Grant (9063-
00046B) and by the Danish Ministry of Education and Science, Digital Pilot Hub, and
Skylab Digital.

References

1. Bamford, C., Lucas, S.: Neural game engine: Accurate learning of generalizable
forward models from pixels. arXiv preprint arXiv:2003.10520 (2020)

2. Blythe, J.: An overview of planning under uncertainty. In: Wooldridge, M.J.,
Veloso, M. (eds.) Artificial Intelligence Today. LNCS (LNAI), vol. 1600, pp. 85–110.
Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-48317-9 4

3. Browne, C.B., et al.: A survey of monte carlo tree search methods. IEEE Trans.
Comput. Intell. AI Games 4(1), 1–43 (2012)

4. Gaina, R.D., Devlin, S., Lucas, S.M., Perez-Liebana, D.: Rolling horizon evolution-
ary algorithms for general video game playing. arXiv preprint arXiv:2003.12331
(2020)

5. Gaina, R.D., Lucas, S.M., Pérez-Liébana, D.: Population seeding techniques for
rolling horizon evolution in general video game playing. In: 2017 IEEE Congress
on Evolutionary Computation (CEC), pp. 1956–1963. IEEE (2017)

6. Ha, D., Schmidhuber, J.: World models. arXiv preprint arXiv:1803.10122 (2018)
7. Hafner, D., Lillicrap, T., Ba, J., Norouzi, M.: Dream to control: Learning behaviors

by latent imagination. arXiv preprint arXiv:1912.01603 (2019)
8. Hafner, D., et al.: Learning latent dynamics for planning from pixels. In: Interna-

tional Conference on Machine Learning, pp. 2555–2565. PMLR (2019)
9. Jang, S., Min, J., Lee, C.: Reinforcement car racing with A3C (2017)

http://arxiv.org/abs/2003.10520
https://doi.org/10.1007/3-540-48317-9_4
http://arxiv.org/abs/2003.12331
http://arxiv.org/abs/1803.10122
http://arxiv.org/abs/1912.01603

536 T. V. A. N. Olesen et al.

10. Justesen, N., Mahlmann, T., Risi, S., Togelius, J.: Playing multiaction adversarial
games: online evolutionary planning versus tree search. IEEE Trans. Games 10(3),
281–291 (2017)

11. Justesen, N., Risi, S.: Continual online evolutionary planning for in-game build
order adaptation in StarCraft. In: Proceedings of the Genetic and Evolutionary
Computation Conference, pp. 187–194 (2017)

12. Kahn, G., Villaflor, A., Pong, V., Abbeel, P., Levine, S.: Uncertainty-aware rein-
forcement learning for collision avoidance. arXiv preprint arXiv:1702.01182 (2017)

13. Kingma, D.P., Welling, M.: Auto-encoding variational bayes. arXiv preprint
arXiv:1312.6114 (2013)

14. Klimov, O.: Carracing-v0 (2016). https://gym.openai.com/envs/CarRacing-v0/
15. Lucas, S.M., et al.: Efficient evolutionary methods for game agent optimisation:

Model-based is best. arXiv preprint arXiv:1901.00723 (2019)
16. Michie, D.: Game-playing and game-learning automata. In: Advances in Program-

ming and Non-numerical Computation, pp. 183–200. Elsevier (1966)
17. Ovalle, A., Lucas, S.M.: Bootstrapped model learning and error correction for

planning with uncertainty in model-based RL. arXiv preprint arXiv:2004.07155
(2020)

18. Perez, D., Samothrakis, S., Lucas, S., Rohlfshagen, P.: Rolling horizon evolution
versus tree search for navigation in single-player real-time games. In: Proceedings
of the 15th Annual Conference on Genetic and Evolutionary Computation, pp.
351–358 (2013)

19. Prieur, L.: Deep-q learning for Box2D racecar RL problem (2017). https://goo.gl/
VpDqSw

20. Risi, S., Stanley, K.O.: Deep neuroevolution of recurrent and discrete world models.
In: Proceedings of the Genetic and Evolutionary Computation Conference, pp.
456–462 (2019)

21. Schrittwieser, J., et al.: Mastering atari, go, chess and shogi by planning with a
learned model. arXiv preprint arXiv:1911.08265 (2019)

22. Silver, D., et al.: Mastering the game of go with deep neural networks and tree
search. Nature 529(7587), 484–489 (2016)

23. Silver, D., et al.: Mastering chess and shogi by self-play with a general reinforcement
learning algorithm. arXiv preprint arXiv:1712.01815 (2017)

24. Tong, X., Liu, W., Li, B.: Enhancing rolling horizon evolution with policy and
value networks. In: 2019 IEEE Conference on Games (CoG), pp. 1–8. IEEE (2019)

http://arxiv.org/abs/1702.01182
http://arxiv.org/abs/1312.6114
https://gym.openai.com/envs/CarRacing-v0/
http://arxiv.org/abs/1901.00723
http://arxiv.org/abs/2004.07155
https://goo.gl/VpDqSw
https://goo.gl/VpDqSw
http://arxiv.org/abs/1911.08265
http://arxiv.org/abs/1712.01815

	Evolutionary Planning in Latent Space
	1 Introduction
	2 Related Work
	2.1 Planning
	2.2 Learning World Models

	3 Approach
	3.1 Learning the World Model
	3.2 Evolutionary Planning in Latent Space

	4 Experiments
	5 Results
	5.1 Non-iterative Training
	5.2 Iterative Training

	6 Discussion and Future Work
	References

