
Evolutionary Planning on a
Learned World Model

supervised by Sebastian Risi

Thor V.A.N. Olesen
Dennis Thinh Tan Nguyen

A thesis presented for the degree of
Master of Science, Computer Science

Figure 1: World Model, Scott McCloud’s Comics (McCloud 1993).

Department of Computer Science

IT University of Copenhagen

Denmark

June 2020

Abstract

Artificial Intelligence (AI) and Machine Learning (ML) have shown an
upward trend of growth in the 21st century. The journey to understand if
machines can truly think and demonstrate some notion of ”intelligence”
has been a fascination in human society early on. The term ”artificial
intelligence” was coined in 1956 and is the science of creating machines
that behave in a way considered intelligent, if it was a human being.
However, expectations to AI seem to always outpace reality. Arguably,
what most people think of as ”true AI” has not yet been experienced, and
most recent advances in AI are due to new hardware. This does not signify
progress toward ”general AI” and we find the hysteria to prevent any
impactful progress from being made. Today is the age of implementation,
and we would like to bring back the field to its age of discovery. In this
pursuit, we present a small contribution to the discovery of AI.

The goal of this work is to use evolution to do planning on a learned model
of the world. This is similar to how humans develop a mental model on
the world based on what they can perceive with their senses. Given this
internal model, humans are able to make decisions. We hope to show that
machines can learn a similar model of the world to enable planning by
using the model to simulate experiences and make good decisions. This is
useful in real-world domains without access to a simulator, which means
learning must be done using data from the real system. Recent progress
has been made with model-free reinforcement learning where vast amounts
of data are used to find a policy. However, this is not always possible or
tractable in complex environments, which is why we direct our attention
to sample efficient model-based reinforcement learning methods.

We focus our attention on the single-player, real-time ”CarRacing” video
game by Open AI. We use a Convolutional Variational Auto Encoder
(ConvVAE) to learn a representation of the world and a Mixture Density
Recurrent Neural Network (MDRNN) to learn a dynamics model of the
world. The model is used as a Forward Model (FM) to simulate con-
tinuous actions with a Rolling Horizon Evolutionary Algorithm (RHEA),
which encodes and evolves individuals as sequences of actions (EA) and
repeats planning each time step until a limited look-ahead (RH) to ob-
tain a good driving policy. To the best of our knowledge, this work is
novel, since we show how to combine a Rolling Horizon Evolutionary Al-
gorithm (RHEA) with a learned dynamics model (MDRNN) to do online
policy-space planning with continuous actions in latent space (VAE).

Keywords: model-based reinforcement learning, mixture density recur-
rent neural network (MDRNN), convolutional variational auto encoder
(ConvVAE), planning, rolling horizon evolutionary algorithm (RHEA)

Flow diagram of evolutionary planning agent

Figure 2 shows the flow diagram of our Agent model. The raw car racing
observation is first compressed by a ConvVAE at each time step t to
produce zt. The latent vector zt and the hidden state ht of the MDRNN
dynamics model is fed as input to the RHEA planning agent at each time
step. The agent uses the dynamics model to do planning by simulating
experiences in latent space and outputs a policy as an action vector at for
motor control. The dynamics model takes the current zt and action at as
input to update its own hidden state and produce ht+1 used at time t+ 1.

Figure 2: Simulated Online Evolutionary Planning (RHEA) in Latent
Space (VAE) using a Learned Model (MDRNN) of the Car Racing game

Acknowledgements

We want to thank our supervisor Sebastian Risi for his valuable and con-
structive suggestions during the planning and development of this thesis
research work. We have enjoyed our weekly meetings and his insightful
advice as a pioneer in the field, especially during times of desperation.
We would also like to thank Rasmus Berg Palm for his immense help in
getting us started on the planning part of the thesis and his willingness to
have feedback meetings to help us moving on the right path. Finally, we
would like to thank Lars Reiter Nielsen and Jonas Hartmann Andersen
for constructive criticism on the written work.

I (Thor) would like to thank Pieter Abbeel and Dan Klein, who taught my
first introductory course in Artificial Intelligence and sparked my interest
in exploring the technical and mathematical intricacies in Artificial Intel-
ligence and Machine Learning. Further, I would like to thank my thesis
partner Dennis for being patient, supportive, and a great friend. Finally,
I would like to thank my family and Alexandra for all their love, support,
and encouragement throughout my studies.

I (Dennis) would like to thank my thesis partner Thor Olesen for being
supportive, inspiring, and a great friend throughout my years at ITU.
He has pushed my academic limits in many ways, which has encouraged
me to stay curious and explorative about the unknown. Further, I would
like to thank my parents, sister, and Isabella for all their continuous love,
support, and encouragement.

Contents

1 Introduction 1
1.1 AI in Games . 2
1.2 Real-Time Racing Games 3
1.3 Research Question . 4

2 Background 5
2.1 Artificial Intelligence (AI) 6

2.1.1 The World: an Agent and an Environment 6
2.1.2 State Spaces and Search Problems 6
2.1.3 CarRacing Problem Formulation 6

2.2 Machine Learning (ML) 9
2.2.1 Supervised Learning 9
2.2.2 Categories . 11
2.2.3 Bias-Variance trade-off 11

2.3 Reinforcement Learning (RL) 13
2.3.1 Markov Decision Processes 14
2.3.2 Model-Based Reinforcement Learning 15

2.4 Planning . 21
2.4.1 Planning with Uninformed Classical Search 21
2.4.2 Planning with Informed Heuristic Tree Search (MCTS) 22
2.4.3 Planning with Informed Genetic Local Search (RHEA) 24
2.4.4 N-Tuple Bandit Evolutionary Algorithm (NTBEA) 27

2.5 Artificial Neural Networks (ANN) 30
2.5.1 Feed-Forward Neural Network (FNN) 30
2.5.2 Auto Encoders (AE) 33
2.5.3 Deep Neural Networks (DNN) 34
2.5.4 Convolutional Networks (CNN) 34
2.5.5 Recurrent Neural Networks (RNN) 36
2.5.6 Mixture Density Networks (MDN) 40

3 Related Work 42
3.1 Learning Generative Models 43
3.2 World Models . 44
3.3 Deep Neuroevolution of World Models 48
3.4 Learning Latent Dynamics for Planning (PlaNet) 49
3.5 Planning with a Learned Model (MuZero) 52
3.6 Dream to Control (Dreamer) 56
3.7 Summary . 58

4 Approach 59
4.1 Evolutionary Planning in Latent Space 60
4.2 System Architecture . 62
4.3 Data Generation . 64
4.4 World Model . 67

4.4.1 Vision: Variational Auto Encoder (VAE) 68
4.4.2 Memory: Mixture Density RNN (MDRNN) 72

4.5 Control: Plan with RHEA Policy Search 76
4.5.1 Simulated Environment 76
4.5.2 Extensions to RHEA and RMHC 78

5 Experiments 80
5.1 Preliminary Planning Experiments 81
5.2 NTBEA Parameter Tuning 94
5.3 Planning Benchmarks . 97

5.3.1 Tuned vs Preliminary Parameters 98
5.3.2 Model F - Least Complex Model 98
5.3.3 Model L - Best in Preliminary Tests 100
5.3.4 Model M - Random Rollouts Only 101
5.3.5 Total Reward vs Reward MSE 103
5.3.6 Different Horizons - L and M 103
5.3.7 Model L Parameters in Model M 105
5.3.8 Shift Buffer - L and M 106
5.3.9 Summary . 107

6 Discussion 109
6.1 Model (MDRNN) . 110
6.2 Planning (RHEA) . 111
6.3 Challenges . 112

7 Conclusion 113
7.1 Future work . 115

A Appendix 116
A.1 Background . 116

A.1.1 Model-based RL and Planning Summary 116
A.1.2 Reinforcement Learning: Model-Free Approach . . 117
A.1.3 Planning: Monte Carlo Tree Search(MCTS) 118

A.2 Related Work . 121
A.2.1 Shaping Belief States with Generative Models . . . 121

A.3 Approach . 123
A.3.1 Generative Modelling 123
A.3.2 VAE as a Probabilistic Graphical Model (PGM) . . 123
A.3.3 Multivariate Gaussian KL Divergence Derivation . 131
A.3.4 Closed Form Derivation of KL Divergence between

Multivariate Gaussian and Standard Normal 132
A.3.5 MDRNN Loss: GMM Log Likelihood (logsumexp) . 134

A.4 Experiments . 135
A.4.1 NTBEA Tuning: Planning Parameter Explanations 135

List of Figures

1 World Model Comics . 1
2 Thesis Approach: Simulated Planning Flow Diagram . . . 3

2.1 Bias Variance Trade-off . 12
2.2 RL Agent-Environment Feedback Loop 13
2.3 Model-Based RL Loop . 16
2.4 RHEA Flow Diagram . 25
2.5 MLP Forward Pass . 32
2.6 Autoencoder Architecture 33
2.7 CNN Convolution . 35
2.8 Vanilla RNN . 37
2.9 LSTM Memory Cell and Gating flow 38
2.10 Mixture Density Network 40

3.1 World Model Flow Diagram 44
3.2 VAE Flow Diagram . 45
3.3 MDRNN Flow Diagram 45
3.4 PlaNet: Latent Dynamics Model Design 51
3.5 MuZero: Planning, Acting and Training 53

4.1 Thesis Reproduction Flow 61
4.2 System Component Dependencies 63
4.3 JSON Hyperparameter Setup 64
4.4 VAE Flow Diagram . 69
4.5 Reparameterization Trick 71
4.6 MDRNN Flow Diagram 72
4.7 Singularity in Likelihood Function 75
4.8 Planning with Independent States during Evaluations . . . 78

5.1 VAE Reconstruction Comparison 83
5.2 VAE Reconstruction - Good Rollouts Only 84
5.3 VAE Train and Test Loss 84
5.4 Model B MDRNN Reconstructions 86
5.5 Model C Histogram: Average Reward vs Speed 87
5.6 Model F Histogram: Average Reward vs Speed 88
5.7 Histogram of Model C, F, G, H, I: Preliminary Test Reward 90
5.8 Model G-I Histogram: Average Reward vs Speed 90
5.9 Car Position Image Sequence vs MDRNN Sequence Length 91
5.10 Model A, M, L Histogram: Preliminary Test Reward . . . 92
5.11 Model F, L, M Histogram: Preliminary Test Reward . . . 93

5.12 Agent (model L, RHEA) High Speed Corner Issue 97
5.13 Model F Histogram: Tuned vs Preliminary Parameters . . 98
5.14 RMHC Car Trajectory with Model F 99
5.15 Model L Histogram: Tuned vs Preliminary Parameters . . 100
5.16 RHEA Car Trajectory with Model L 101
5.17 Model M Histogram: Tuned vs Preliminary Parameters . . 101
5.18 Model M Planning Trajectory Into Grass 102
5.19 Total Average Reward vs Reward MSE 103
5.20 Histogram: Horizons for Model M and L 104
5.21 Histogram: Model L Parameters in Model M 105
5.22 Histogram: Reward vs Shift Buffer 106

A.1 One iteration of general MCTS approach 119
A.2 Normalized Performance of GPUs and TPU 120
A.3 VAE as Graphical Model and Neural Network 124
A.4 ConvVAE Architecture . 136
A.5 Model C-E Histogram: Average Reward vs Speed 138

List of Tables

5.1 MDRNN World Model Parameters 85
5.2 RHEA and RMHC Preliminary World Model Tests 93
5.3 Parameter search space for RMHC and RHEA 94
5.4 Tuned Parameters for RHEA with NTBEA 95
5.5 Tuned Parameters for RMHC with NTBEA 95
5.6 RHEA Comparison - Open AI Car Racing Benchmark . . 108

Chapter 1

Introduction

The question of whether a computer can think is no more interesting than
the question of whether a submarine can swim. - Edsger W. Dijkstra

The wish to start our studies at the IT University of Copenhagen was
grounded in a deep desire to understand computers, programming and
how it is possible to build anything in the virtual realm. Led by an intense
curiosity, we set out to understand how it is possible to solve so many
different problems in society through the use of machinery, computation
and thinking. This has led to a new way of life: imagining something and
bringing it alive as a manifestation in the real world through countless
hours of thinking, programming and drinking coffee.

At some point, you learn enough about the machine and its mechanics that
you no longer consider yourself a layman and start to question whether
a machine can genuinely think for itself. As Dijkstra seems to put it,
whether computers think or submarines swim, is entirely dependent on the
definitions of ”thinking” and ”swimming, ” which are ambiguous. Having
demystified some parts of Computer Science, you realize that people often
debate over the field of AI and ML but never settle to agree on a definition
of ”thinking”, what AI is and when something is truly ”intelligent”.

As Computer Scientists, we realize that computers will most likely never
”think” in the same way as a human does. Analogously, it makes no sense
to discuss whether a submarine swims or not. Seemingly, a submarine does
not swim but that does not make it an interesting topic of debate, since
that is just a definition. Regardless, submarines are able to move through
water just like fish and we can compare their methods, limitations and
how well they each do it.

Similarly, we can still try to compare whether or not methods in AI can
solve different human tasks, regardless of whether they actually exhibit
any notion of ”true intelligence”. In our case, we will try to use a set of
methods in the field of AI to solve the continuous control task of driving
in a real-time car racing game.

1

2 CHAPTER 1. INTRODUCTION

1.1 AI in Games

The field of Artificial Intelligence (AI) in games is concerned with re-
search in methods that produce ’intelligent’ behavior in games. From our
standpoint, the central problem in AI is the creation of a rational agent
that, given some goals, tries to perform a series of actions that yield the
best-expected outcome. This thesis explores whether AI planning algo-
rithms can be used in a simulated model of a car racing game to enact
well-behaved driving. For this purpose, a brief overview of Artificial In-
telligence in games is presented. In the rest of the thesis, the terms ”game
AI” and ”AI” will refer to the same research field. In this thesis, the focus
will only be on methods used to control an agent to play a game (Game
as AI benchmarks).

Games have always been used in AI research progress as a self-contained
environment for testing ideas, solving complex problems and getting valu-
able feedback before applying them to real-world problems (e.g., medical
diagnosis, robotics and finance). AI in games has been used for a long
time and most ”research in the field is concerned with constructing agents
for playing games, with or without a learning component. Early pioneers
in the field used game-playing programs to test whether computers could
solve tasks that seemed to require ”intelligence” (Yannakakis and Togelius
2018).

Initially, game AI focused on classic board games (Chess, Checkers), which
seemed to challenge humans by their immense complexity despite the sim-
ple rules and were heavily based on mental models of the game. Alan
Tuning used the Minimax algorithm to play Chess. In 1952, A.S. Douglas
made a program that was able to play Tic-Tac-Toe. Later, Arthur Samuel
invented the first form of reinforcement learning to learn to play Checkers
by self-play. In 1992, Gerald Tesauro developed the TD-Gammon soft-
ware that used an artificial neural network trained via temporal difference
learning by playing backgammon against itself. After this, one of the most
significant breakthroughs in the field of AI was IBM’s Deep Blue program,
which used the Minimax algorithm, Chess domain knowledge and a tuned
board evaluation function to beat the world champion of chess, Garry
Kasparov.

The latest major milestone happened in 2016 in the game of Go. The
game has been a benchmark for game AI with a branching factor that
approximates 250 and a much more extensive search space than Chess.
The branching factor is the number of available actions in a turn and
measures the complexity of a game. The search space denotes the set
of possible states (the agent configuration within its environment) in the
game. In 2016, Google DeepMind’s AlphaGo used Deep Reinforcement
Learning to beat Lee Sedol, one of the best Go players in the world. And
in 2017, AlphaGo won against the world’s best player, Ke Jie. These
board games are known to have discrete turn-based mechanics and full
board visibility.

1.2. REAL-TIME RACING GAMES 3

Today, a lot of research in the field focuses on developing AI for other
games such as video games. In 2014, Google DeepMind used model-free
Deep Reinforcement Learning to play several classic Atari video games
on a super-human level just from raw pixel inputs using a Deep Convolu-
tional Neural Network trained with Q-learning (DQN) directly from pixels
(Mnih et al. 2014). Most recently, the DeepMind team demonstrated how
to use Monte Carlo Tree Search with a learned model to achieve super-
human level in a range of challenging and visually complex Atari domains,
without prior knowledge of the game dynamics and domain knowledge.

For this purpose, model-based Reinforcement Learning (RL) was used to
learn a model of the environment dynamics and then do planning based on
the learned model (Schrittwieser et al. 2020). As they say, ”constructing
agents with planning capabilities has long been one of the main challenges
in the pursuit of artificial intelligence”. One of the major applications of
this approach is in real-world problems where a perfect simular is not avail-
able and the dynamics of the environment are too complex and unknown
to navigate.

1.2 Real-Time Racing Games

There are many types of games that can be categorized accordingly:

• Action space: discrete or continuous actions

• Outcome: deterministic or stochastic (probabilistic)

• Player type: single-player or multi-player

• Environment: fully or partially observable

• Time: real-time or turn-based

Video games are becoming more diverse and complex and provide op-
portunities to work with visual perception of video data similar to how
humans interpret and understand the visual world through vision. Lately,
AI in video games has also been used for procedural content generation
(Yannakakis and Togelius 2018, p. 9) where AI algorithms are used to
create new game content.

From a pragmatic perspective, Open AI provides a nice interface for game
environments and is often used in both industry and academia as a testbed
for AI methods. In our case, we have devoted our attention to the real-
time Open AI car racing video game. This has been chosen, since video
games have increasingly become the new domain of choice for testing and
showcasing new AI algorithms.

4 CHAPTER 1. INTRODUCTION

The car racing game is a single-player, real-time game unlike many of
the previously described games, which are turn-based. Most classic board
games are turn-based where players alternate between taking actions. Of-
ten, the time between turns is unimportant (although tournaments may
enforce time limits). On the other hand, the car racing game is a real-time
game where there is variation in how often an action can be taken.

Usually, this is limited by the screen update frequency of 60 frames per
second (FPS) that ensures a perceived smooth movement, which may be
decreased if rendering is too demanding. In practice however, the number
of actions taken per second is usually limited to less than the FPS. A
given depth of search (i.e., number of actions) means very different things
depending on the time granularity of the game (i.e., limit of how far ahead
agent can look).

From a research perspective, tree-based search methods like Monte Carlo
Tree Search (MCTS) have been the most popular defacto choice for plan-
ning in games. Still, recent research has shown that rolling horizon evo-
lutionary algorithms (RHEA) are a viable and competitive alternative to
MCTS, since they work seamlessly on continuous action spaces like in
video car racing games, unlike vanilla MCTS that only works with dis-
crete action spaces. Being a real-time game, agents have limited time to
respond to environmental signals. Thus, doing planning requires access
to an efficient generative model that can be used to simulate driving in
the car racing game with an efficient search method. For this purpose, it
seems that little research has been done on verifying whether evolution-
based search approaches can be used as a viable alternative to do planning
on a learned model in complex video games with continuous action spaces.

1.3 Research Question

In the previous section, we presented a historical overview of the break-
throughs in AI history. We argued why video games are an under-explored
type of game for doing evolutionary planning in the research field. The
car racing game was chosen as the benchmark for this thesis and the goal
is to explore AI methods for this game and examine the achieved playing
score compared to other AI methods. The following research question was
made based on these observations:

Research Question:

How can we design a game AI agent that can drive complete tracks in
the car racing environment by using a learned model to do evolutionary
online planning that copes seamlessly with the continuous action space?

Chapter 2

Background

This chapter defines and explains the theoretical concepts needed to un-
derstand the work of this thesis, which includes an understanding of arti-
ficial intelligence, machine learning, model-based reinforcement learning,
evolutionary planning algorithms, neural networks and their architectures.

5

6 CHAPTER 2. BACKGROUND

2.1 Artificial Intelligence (AI)

Artificial Intelligence may be defined as ”the study of agents that receive
percepts from the environment and perform actions accordingly”. The
central theme is the idea of a rational agent, which is something that
perceives and acts in an environment to achieve the best outcome, or best-
expected outcome given uncertainty (Russell and Norvig 2009, preface and
p. 4). We adopt the view of intelligence concerned with rational behavior,
meaning an intelligent agent takes the best possible action in a situation.

2.1.1 The World: an Agent and an Environment

Rational agents exist in an environment, which together creates a world.
The environment in the world is everything that surrounds the agent but
is not part of the agent. Intuitively, the environment represents situations,
which the agent is able to perceive and act upon.

2.1.2 State Spaces and Search Problems

To represent a rational planning agent, we need to mathematically express
the environment in which the agent lives, which is formally expressed as a
search problem. The agent’s current situation is called a state, which rep-
resents the configuration within the environment that the agent currently
perceives. Given this current state, the agent wishes to know how it can
arrive at a new state by acting in a way that satisfies its goals in the best
possible way. Thus, a search problem is solved by finding a path from a
start state to goal state and requires four components:

• A state space: set of possible states (situations) in the given world

• A successor function: takes a state-action pair and outputs the
cost of performing the action and a state

• A start state: the state in which an agent exists at first

• A goal test: a function that takes a state as input and determines
whether it is a goal state

2.1.3 CarRacing Problem Formulation

The objective in the CarRacing-v0 environment is to drive a car as fast
as possible through a randomly generated two-dimensional racetrack con-
taining grass and boundaries. Thus, well-behaved driving is defined by
driving on the road while avoiding grass and staying within the bound-
aries. If the car has a high velocity at a corner or on the grass, it may lose
traction and spin out of control. Consequently, this results in much time
spent regaining control and getting back on the road, leading to a worse
game score.

2.1. ARTIFICIAL INTELLIGENCE (AI) 7

The game is considered solved when the agent consistently gets an average
score of 900 points in 100 randomly generated tracks. The total score in
the game is defined by equation 2.1 where t is the number of game ticks
it takes the car to complete the track and 1000 is the maximum possible
score. Every game tick, the score is −0.1 and 1000

N
for every track tile

visited where N is the total number of tiles in a given track.

score(t) = 1000− 0.1t (2.1)

The state space is the set of all possible frames in the car racing environ-
ment. The start state is the initial frame showing the start position of
the car on the track before starting to drive. The goal test returns true if
all the tiles on the road have been visited (track is completed) or the car
leaves the playfield. The Open AI gym interface provides the successor
’step’ function, which returns the score and successor state (frame) given
the current state (frame) and an action.

State Space

In the car racing environment, each state is represented as a frame, which
consists of a 96 ·96 ·3 grid of 256 RGB values where 96 denotes the height
and width of the screen and 3 denotes the number of image channels. The
size of the state space is 2563·962 , which is considered huge and requires
some preprocessing to reduce it to something more manageable.

Firstly, one may resize and crop the frame by reducing the resolution and
removing the image borders, which can reduce the number of possible
states to around 2563·48·36.

Secondly, one could represent each pixel with a value of 1 (road) or 0
(grass), instead of using the full RGB spectrum across three channels.

As a result, the cardinality (i.e., size) of the state space could be reduced
down to 248·36. Regardless, the state space remains very large and doing
this preprocessing poses a computational cost, which must be taken into
account if frames are received and preprocessed in real time.

Action Space

In the CarRacing environment, an action is represented as a vector of
three components used to control the gas, brake and steering of the car.
An action is considered to be a triple (s, g, b) ∈ [−1, 1]×[0, 1]×[0, 1] where
steering (s) ranges from hard left (-1) to hard right (+1) and acceleration
(g) and braking (b) both range from doing nothing (0) to full acceleration
or braking (1).

The complexity of the game search space is defined by the branching fac-
tor of all possible actions at any state. When the domain is bigger, the
branching factor increases and the search space explodes. The contin-
uous action space is infinitely large and requires informed heuristics or
discretization to overcome the combinatorial explosion.

8 CHAPTER 2. BACKGROUND

Characteristics

The environment is partially observable, meaning the agent cannot per-
ceive all aspects of the environment directly relevant to its choice of action.
Namely, the agent can only observe the current frame, which shows a seg-
ment of the track, instead of the whole track. This is similar to self-driving
vehicle scenarios, which deal with partial information to solve the problem
of autonomous driving. If the environment was fully observable, the agent
should be able to observe the full track, since this might be relevant to
its task. Namely, it might be driving fast on a forward road segment and
needs to know when a sharp turn is approaching to reduce speed in time.

By default, the environment is deterministic, meaning the next state
(frame) of the environment is completely predictable from the current
state and the action executed by the agent. Notice, if one uses a model to
represent the environment, the next state might have some uncertainty as-
sociated with it coming from randomness or a lack of a good environment
model. In such stochastic games, the successor function is not determinis-
tic, meaning it does not map an action and state (frame) to one particular
state but instead to a distribution over next future states along with the
cost. This may be represented as a function st, at → P (st+1), c(st, at, st+1)
where t denotes the current time step, st denotes the current state, at de-
notes the current action taken, P (st+1) denotes a distribution over future
states st+1 and c(st, at, st+1) denotes the cost of taking action at from state
st to successor state st+1.

The environment is sequential, meaning current and past decisions affect
future decisions. Namely, the way the agent drives now or drove earlier
will affect the consequences of its future driving. For example, the agent
may be driving very fast in the past, resulting in a high current speed,
which may ultimately prevent the agent from completing a sharp turn.
Thus, the agent needs to consider the temporal dependency of the vehicle’s
speed when making decisions. On the other hand, an AI that does some
medical image analysis may decide if a person is sick from a single image,
which means it is an episodic environment, as one image is independent
to the next. In car racing, the sequence of frames are highly correlated
and exhibit a temporal aspect, in which future driving actions depend on
previous actions.

Further, it is a single-agent environment, since only one agent is present
to drive a car, unlike systems with multiple agents interacting with each
other. Thus, the environment is not a competitive or cooperative multi-
agent environment, in which the behaviors of others matter. The environ-
ment is static, meaning it does not change while the agent is ”thinking”.
Finally, the state space is discrete (very large but finite space) and the
action space is continuous.

2.2. MACHINE LEARNING (ML) 9

2.2 Machine Learning (ML)

Historically, AI was mainly dominated by a symbolic (explicit) and logical
approach between the 1950s and 1980s where knowledge-based expert
systems became popular (Russell and Norvig 2009, p. 17-24). These
models encoded human domain knowledge explicitly as symbolic facts
(predicates) in a ”knowledge base” database of rules. The system would
then solve human problems using AI methods such as logic to reason
from database facts and search to find solutions to problems. Symbolic
AI are methods that use such an explicit representation of a problem with
formulas or rules. In contrast, subsymbolic AI (machine learning - neural
networks) are methods that use an implicit representation learned from
experience without rules, mainly inspired by the brain (Bolander 2019).

Machine learning is a subbranch of AI that investigates how algorithms
can improve automatically through experience or data. Arthur Samuel
coined the term in 1959 as ”the field of study that gives computers the
ability to learn without being explicitly programmed”. We prefer the more
nuanced formal definition by Tom Mitchell: ”A computer program is said
to learn from experience E with respect to some class of tasks T and
performance measure P if its performance at tasks in T, as measured by
P, improves with experience E” (Mitchell 1997, p. 2). Machine learning
(also known as pattern recognition) grew into its own field, shifting focus
away from symbolic approaches toward statistical and probability theory
methods with a focus on prediction and finding common patterns.

2.2.1 Supervised Learning

The canonical example of a machine learning problem is that of hand-
written digit recognition. We are given a 28 by 28 greyscale image repre-
sented by an input or feature vector x ∈ R28×28 with d = 28·28 dimensions
and need to predict the digit it represents called the target, output or la-
bel (vector) t ∈ {0, 1, . . . , 9}. The input feature vector and output target
constitute a single example and usually we are given n such examples that
constitute a training set :

D = {(x1, t1), . . . , (xn, tn)} (2.2)

The goal is to find a model f(x,θ) described by k parameters θ ∈ Rk,
which is an idealized mathematical representation of a real-world phe-
nomena. To do this, we need to learn or train such model, which means
tuning (i.e., changing) the parameters θ such that fθ(x) = t. This requires
a loss function L(tn, f(xn,θ)), which quantifies the difference between the
actual target and model predictions. The error is then the total loss:

E(θ) =
∑
n

L(tn, f(xn, θ)) (2.3)

We use the error to guide in which direction the parameters should be
tuned to minimize the difference between model predictions and targets:

θ∗ = argminθE(θ) (2.4)

10 CHAPTER 2. BACKGROUND

The parameters are typically updated using an optimization procedure
such as gradient descent, which minimizes the average error across all
examples by iteratively moving in the direction of the steepest descent
as defined by the negative of the gradient in Calculus (study of change),
meaning the direction in which the difference between the actual target
and model predictions is reduced maximally across the whole training set:

θt+1 ← θt − η
1

n

n∑
i=1

d

dθt
L(ti, f(xi)) (2.5)

Notice we just use the derivative if there is only one parameter. Oth-
erwise, given multiple parameters, we reduce the difference between the
actual target and model predictions across all k parameter dimensions by
repeating this process for a gradient vector of k partial derivatives:

∇f = [
∂

∂θ1

. . .
∂

∂θk
]T (2.6)

where each component j ∈ [1, k] represents the derivative (rate of change)
of the loss function with respect to parameter j:

θjt+1 ← θjt − η
1

n

n∑
i=1

∂

∂θjt
L(ti, f(xi)) (2.7)

When the model is learned, we can evaluate it on a test set to see how well
the model is able to generalize, meaning its ability to correctly categorize
new examples not in the training set. Similar to how we may have multiple
parameters, we may also generalize the representation of our input data
from a set of input vectors into a data matrix containing all n examples in
the rows with d features each: X = [x1 · · ·xn]T where each feature vector
(xi)

T ∈ R1×d so X ∈ Rn×d.

For example, we might use a linear model where the number of parameters
correspond to the number of features in the input: fθ(x) = xT · θ = t̂
where xT ∈ R1×d, θ ∈ Rd×1 and t̂ ∈ R (one example prediction). Linear
Algebra is used to model such linear sums in multiple dimensions using
matrix vector notation: f(X) = X · θ + b where X ∈ Rn×d, θ ∈ Rd×1 and
b ∈ Rn×1 and t̂ ∈ Rn×1 (example prediction vector). Probability may be
used to measure uncertainty in the real world as part of the model when
making decisions with incomplete information.

2.2. MACHINE LEARNING (ML) 11

2.2.2 Categories

In general, there exist three categories of Machine Learning, including Su-
pervised learning, Unsupervised learning and Reinforcement learning. Su-
pervised learning is where you are given a data setD = {(x1, t1), . . . , (xn, tn)}
and learning is similar to having a teacher train you for a test where he
is able to provide you the correct answers (targets).

The example we described is a Supervised Machine Learning problem in
which we are given a training set of input-target example pairs and the
task is to learn a function that match each input to an output (prediction)
such that the output matches the corresponding target. This fundamen-
tally requires a model, loss function and optimization procedure.

Unsupervised learning is where we are not given the targets (labels):

D = {x1, . . . ,xn} (2.8)

Now, we have to uncover patterns in the data using clustering or density
estimation. Clustering is the task of dividing examples into groups such
that examples within a group are similar but dissimilar to examples in
other groups. Density estimation is the task of estimating the distribution
from which examples were drawn. Reinforcement learning is the task of
finding actions in a situation that maximize total expected future reward.

2.2.3 Bias-Variance trade-off

Ultimately, we wish to obtain a model that generalizes well to new unseen
test examples of the phenomena we try to model. This generalization
ability depends on the complexity of the model, which is determined by
whether the model is too complex and overfitting the noise in the training
data, or too simple, making it unable to capture the underlying pattern
inherent in the data.

Bias is the degree to which the model oversimplifies the relationships
inherent in the data. Variance is the degree to which the model follows
the patterns inherent in the data too closely. Thus, overfitting happens
when the model has low bias, but a high variance and underfitting occurs
when the model has a high bias but low variance. Neither models are
likely to generalize well, so striking a balance between overfitting and
underfitting is crucial in Machine Learning to capture the pattern and
not the noise inherent in the data.

The bias-variance trade-off describes this tension between the prediction
error introduced by the bias and variance that we can control, unlike the
error coming from noise. The generalization (test or prediction) error is
the sum of the bias squared, variance and the irreducible error due to noise
in the data. Ideally, we want a model with low bias and low variance, but
these are bipolar, so we strive for a middle ground. Thus, we experiment
with different levels of complexity and choose the one that minimizes the
total error to find a model that generalizes well.

12 CHAPTER 2. BACKGROUND

The bias-variance trade-off is shown in figure 2.1 where y is the variable
we are trying to predict, x is our input vector and it is assumed that

y = f(x) + ε (2.9)

where ε ∼ N(0, σε) is the error assumed normally distributed with mean
zero. The model f̂(x) is a prediction of the true target y and the mean
squared error is the expectation of the squared difference between the
prediction and target (Bishop 2006, eq. 3.41, p. 149):

Mean Squared Error (MSE) : L(y, f̂(x)) = E[(y − f̂(x))2]

Bias Variance Decomposition : (E[f̂(x)]− y)2 + E[(f̂(x)− E[f̂(x)])2] + σ2
ε

Expected total loss = bias2 + variance + noise

(2.10)

Figure 2.1: Bias and variance in total error (Fortmann-Roe 2012)

2.3. REINFORCEMENT LEARNING (RL) 13

2.3 Reinforcement Learning (RL)

Previously, we described car racing as a traditional search problem where
we attempt to find a path from a starting point to some goal state using a
deterministic successor function that maps a state-action pair to a single
successor state and the cost of taking an action in a given state.

However, there is usually a degree of uncertainty in the real world. Thus,
we now consider a different environment setting where the successor func-
tion maps a state-action pair to a distribution over successor states and
a reward. As such, the cost that is usually minimized is replaced with a
reward to be maximized.

Thus, we now take into account the dynamics of the world by considering
an environment with an agent whose actions are nondeterministic, which
means there are multiple future successor states that can happen from an
action taken in a given state. In games, this kind of environment setting
is referred to as a stochastic game.

Such problems where the world is uncertain are classified as nondetermin-
istic search problems and can be solved with models known as Markov
Decision Processes (MDP) where the environment is fully observable.

Figure 2.2: Agent-Environment Feedback Loop (Kapoor 2018)

In Reinforcement Learning (RL), an agent makes observations (perceive)
and takes actions (act) in an environment (world) yielding rewards (feed-
back) that incentivize certain behavior as shown in figure 2.2. The objec-
tive is to learn a policy (action given state) to act in a way that maximize
future expected reward.

Thus, ”Reinforcement learning is learning what to do through experience
- how to map situations to actions - so as to maximize a numerical re-
ward signal”. The learner is not told which actions to take, but must
instead discover which actions yield the most reward by exploring the
unknown transition dynamics of the environment. Trial-and-error search
and delayed rewards are what defines it (Sutton and Barto 2018, p.1).

14 CHAPTER 2. BACKGROUND

2.3.1 Markov Decision Processes

A Markov Decision Process is a model used to solve sequential decision-
making problems in a stochastic environment represented by a tuple 〈S,A, T,R〉
where S is the set of states, A is the set of actions, T is the transition (dy-
namics) function and R is the reward function. Notice the set of states (S)
and actions (A) are represented the same way as in traditional search prob-
lems. However, the deterministic successor function s, a → s′, c(s, a, s′)
is now represented by a transition function T : s, a → P (s′|s, a), which
models the probability of moving to state s′ at time t+ 1 by taking action
a in state s at time t. The cost is replaced by a separate reward function
that describes the immediate scalar reward signal attained by taking an
action in a given state at time t: R : s, a → R. An MDP also consists of
a set of starting states S0, a horizon T and a discount factor γ ∈ [0, 1].

The discount factor models an exponential decay in the value of rewards
over time. Intuitively, the discount factor helps determine how much the
agent cares about rewards in the future where γ = 0 favors immediate
reward and γ = 1 is indifferent to future rewards. In general, solving an
MDP means finding an optimal policy π∗ : S → p(A = a|S) such that
the expected reward is maximized. If the MDP is episodic, the state is
reset after each episode (game) of length T and the episode is is said to
be a trajectory or rollout E = 〈e1, . . . , eT 〉 of experiences e1 = 〈(st, at, rt)〉
represented by the sequences of states, actions and rewards. The return
is the total accumulated reward obtained by following a policy in the
environment until the end, either determined by a fixed horizon or an
infinite horizon with a discount factor of y < 1:

R =
T−1∑
t=0

γtrt+1 (2.11)

The goal of RL is to find an optimal policy, π∗, which achieves the maxi-
mum expected return across all states:

π∗ = argmaxπE[R|π] (2.12)

Assuming the MDP is non-episodic, meaning it has an infinite horizon of
T =∞, γ < 1 is used as mathematical convenience to prevent an infinite
sum of rewards. Unlike supervised learning in which feedback given as
targets are immediately received, reinforcement learning is subject to the
credit assignment problem, which is the problem of determining which
action(s) that lead to a certain outcome. Namely, the reward feedback is
often delayed (sparse) so it does not depend on a single decision performed
in the current state but, rather, on the whole sequence of agent actions.
This is why a finite horizon is used to place constraints on the number
of time steps for which the agent can take actions and collect rewards.
Hence, the agent is given a fixed number of time steps or episodes (games)
as a ”lifetime” to accumulate as much reward as possible before being
automatically terminated.

2.3. REINFORCEMENT LEARNING (RL) 15

A main assumption held by MDPs is the Markov property, which states
that the future and past are conditionally independent, given the present:

P (st+1|st, at, st−1, at−1, . . . , a0, s0) = P (st+1|st, at), (2.13)

where s0 . . . st, a0 . . . at are state action sequences up to time t. These
probabilities are encoded by the transition function T (s, a, s′) = P (s′|s, a),
which represents that probability that an agent taking action a ∈ A from
a state s ∈ S ends up in state s′ ∈ S in time t+1, denoted ′ (apostrophe).

The Markov assumption is popular amongst RL algorithms but is often
considered unrealistic, since it requires states to be fully observable. Real
world environments are often partially observable and can instead be mod-
elled with a Partially Observable Markov Decision Process (POMDP). A
POMDP may be seen as a generalized MDP model of the environment dy-
namics where the agent is unable to observe everything, like in most real
problems, so it has to maintain a belief (distribution over states) instead
where b(st) = P (st).

Thus, a POMDP can be seen as an MDP with a sensor model P (ot|st, a)
that describes the probability of making a noisy observation o given a
state-action pair. The agent receives a noisy observation ot, instead of
the unobservable hidden state st from the sensor model, which is used to
update its belief b(st+1) about the next hidden state st+1. The agent then
computes the new belief state bt+1 = P (st+1|ot, at, bt) based on a current
belief state bt, action at and observation ot (Kochenderfer 2014).

2.3.2 Model-Based Reinforcement Learning

”Model-based methods rely on planning as their primary component, while
model-free methods primarily rely on learning a policy through trial-and-
error directly from experience” (Sutton and Barto 2018, p. 159). Refer
to appendix A.1.2 for more details on model-free RL. It may be time-
consuming to learn a policy directly from experience, since converging to
an optimal policy requires sufficient exploration of the state space.

This may take a long time when using deep neural networks as non-
linear function approximators of state values (i.e., quality of a state).
Model-based Reinforcement Learning solves RL problems by learning a
model directly from experience and use that model to enable planning to
construct a policy (plan or action). Planning is then any method (usually
a special type of search) that uses a model in a simulated environment to
produce or improve a policy used to select actions. Commonly, a different
representation of the state space is used, which contains information more
relevant to the task at hand.

16 CHAPTER 2. BACKGROUND

Traditional search algorithms employ state-space planning, which is a
search through the state space for an optimal policy or an optimal path to
a goal. Actions cause transitions from state to state and value functions
are computed over states. One may also do plan-space planning, in which
you search through the space of plans (Sutton and Barto 2018, p. 160).

”A model of the environment is anything that an agent can use to predict
how the environment will respond to its actions” (Sutton and Barto 2018,
p. 159). Thus, the model M = 〈Tθ, Rθ〉 is a representation of an MDP
〈S,A, T,R〉 parameterized by θ that estimates the transition and reward
function. The estimation is usually done using a nonlinear function ap-
proximator, such as a deep neural network that can recognize patterns
inherent in a complex environment. The state-space S and action space
A are assumed to be known.

Planning is then using the model to do lookahead of what value or policy
(action) to select in an environment based on the return in equation 2.11.
Thus, real interactions are replaced by simulated interactions in a simu-
lated environment (the model). Planning is all done internally without
taking steps in the real environment, which allows us to think.

Model-based RL is an iterative procedure where the agent acts in an
environment that generates experiences perceived by the agent. These
experiences are used to learn a model of the environment. The model is
then used to enable planning (thinking) and constructing or improving the
value or policy function before acting again. Thus, we learn a model and
use planning to solve the MDP, instead of using dynamic programming
to figure out the optimal value or policy function. Each time we get new
experiences, we may update our estimates of the MDP represented by our
model Mθ = 〈Tθ, Rθ〉 shown in figure 2.3.

Figure 2.3: Model-Based RL Loop (Silver 2020)

2.3. REINFORCEMENT LEARNING (RL) 17

Model-based vs Model-free RL

Fundamentally, both model-based and model-free RL uses the computa-
tion of value functions to estimate how good states in the environment
are to guide the policy search (see A.1). However, learning a value or
policy function may be hard. For example, chess has a sharp value func-
tion, since a particular move can suddenly change the odds of winning. In
chess, the value function seeks to learn about states where its not a termi-
nal position. This, requires a true understanding of the game mechanics
to quantify how likely you are of winning. Yet, the reward function is
an easy learning problem, since the reward is just 0 unless checkmate, so
one simply needs to classify positions as checkmate or not. In chess, the
model is the rules used to do lookahead to estimate the value function
(based on the reward signal).

Instead of estimating the value function by learning, this may be done
by planning using tree search. Tree search is powerful in games due to
its ability to construct a more accurate value function when it might
otherwise be hard to estimate it directly from experience. In this regard,
sometimes a model provides a more compact and useful representation
about the information of the environment, rather than the policy or value
function itself.

Planning sometimes helps because trying to learn a value function directly
is hard in a complex environment like Go, Chess, or video games (e.g.,
car racing). Intuitively, planning provides the means to roll forward in
the state space to see what might happen. If the rules of the game are
not provided, the agent must figure out those rules first and then plan
accordingly. Alternatively, one may disregard the RL problem and instead
consider the planning problem where the model tells the rules (MDP) used
to figure out an optimal move. Thus, the motivation of using model-based
RL, besides sample efficiency, is when modelling complex MDPs where it
may be hard to estimate the value function and do well without planning.

Pros and Cons

The advantages of model-based LR are twofold. Firstly, one can efficiently
learn a model by supervised learning (see 2.2.1). This is like having a
teacher tell a pupil the right thing; given a state and an action, what is
the target next state and reward. Thus, it is not necessary know the state
after a full trajectory (simulation) of steps but only one step. Secondly,
one can use the model to reason about uncertainty. In general, we want
to take actions that make us understand the world better. Hence, it is not
always ideal to take actions that maximize reward from the current state
(i.e., view of the world). Namely, ones understanding of the world might
be wrong. Ideally, the model tells everything required to know and the
uncertainty inherent to the model can be used to encourage exploration.
The downside is that there are two main sources of approximation error
from the rewards and the dynamics (next state predictions given state-
action pair). This means planning will only be as good as the model.

18 CHAPTER 2. BACKGROUND

Model Learning

The goal is to estimate a model Mθ from experience {S1, A1, R2, . . . , ST},
which is a supervised learning problem:

S1, A1 → R2, S2

S2, A2 → R3, S3

...

ST−1, AT−1 → RT , ST

Learning the reward functionR : s, a→ r is a regression problem where we
can use Mean Squared Error to quantify the difference between predicted
rewards of the model and actual rewards in the real environment. Learn-
ing the dynamics function T : s, a → P (s′|s, a) is a density estimation
problem, which might use Kl divergence loss to minimize the difference
between the true and predicted distribution over next states. The goal is
then to find the parameters θ that minimize the total loss on experiences
in our training data.

Planning with an inaccurate model

The environment model learned may be imperfect: Mθ = 〈Tθ, Rθ〉 6≈M =
〈T,R〉. Thus, the model-based RL agent’s performance is limited to the
optimal play it can achieve in the approximated MDP. Hence, the agent
is only as good as the estimated model. When the model is inaccurate,
the planning process will compute a suboptimal policy. One solution is to
use model-free RL methods when the model is unable to promote further
exploration.

Another solution is to use some Bayesian approach, in which one explicitly
reasons about model uncertainty where deviations on reward and next
state predictions are used to determine if one should plan. Nonetheless,
in the continuous state-action setting, one may never revisit the exact
same state or retake the same action. In these scenarios, we use function
approximation like neural networks and not search methods relying on
discrete state-actions. In summary, the model is not perfect, so we need
ways of exploring uncertain parts of the world.

Planning problem: simulation-based search

The planning problem is finding a good policy using a learned environment
model. This can be solved by taking samples of imagined trajectories and
use those to do efficient planning. The key idea of this is based on sampling
and forward search. Namely, since many real environments have large
state spaces, one may not efficiently explore the whole state space. Thus,
we need to resort to ways of sampling experiences in the environment such
that the world is sufficiently explored to model its dynamics accordingly.

2.3. REINFORCEMENT LEARNING (RL) 19

Forward search

Forward search algorithms select the best action by lookahead and they
traditionally build a search tree starting from the current state as the
root. The search algorithm then uses the model of the MDP to look
ahead. Thus, there is no need to solve the whole MDP but only a sub-
MDP starting from ”now”. This makes sense, since we often care more
about understanding our current state (situation) than the state further
into the future.

By analogy, one might be climbing a mountain and for this task the next
step is more important to get up the mountain. Similarly, forward search
focuses on what is likely to happen next in the short term future. Thus,
one may not need to solve the whole MDP (i.e, finding a complete path
like traditional search algorithms do) and instead focus on what is now
represented by a sub-MDP (part of the environment search space).

Simulated-Based Search is a method that uses forward search combined
with sample-based planning. Thus, it simulates k episodes (rollouts) of
T experiences (sequence length) from time t (now) using its environment
model: {skt , Akt , Rk

t+1, . . . , S
k
T} ∼ Mθ. These simulated experiences are

then used to either learn or plan what to do next. Forwarch search rests
on the assumption that planning always starts from some notion of ”now”.
Intuitively, one starts from ”now” and imagine what may happen next
(trajectory experience sampled from model) and learn from that imag-
ined experience. This is analogous to imagining how one will climb the
mountain before actually doing it.

Sampling

Sampling helps us focus on what matters by sampling promising and re-
vealing actions with high probability from the environment. For this pur-
pose, a simulation policy π is used as a way of picking actions in the
simulation model Mθ. For example, MCTS simulates k episodes from the
current (real) state and evaluates actions by their mean return (i.e, aver-
age score on all simulations of doing action a into some state s). Using
such simulation policy to rollout (i.e, unfold) games is a simple way of
estimating the value of how good a state it.

Often this turns out to be a viable alternative to complicated value func-
tion approximations that may be hard to get right with complex ML meth-
ods. In practice, this simulation-based approach (also called MC rollouts)
works very well, since it dynamically probes how good positions are from
the current state (i.e, now) onwards, while ignoring all other irrelevant
environment scenarios. The (weak) law of large numbers (LLN) roughly
states that you obtain the expected value if you repeat an experiment
independently a larger number of times. By the law of large numbers,
given enough independent, simulated experiences, such model should ap-
proximate the real transition and reward function, meaning it gradually
converges to an optimal policy given enough representative samples.

20 CHAPTER 2. BACKGROUND

Recall that one resorts to informed, sample-based, approximation search
methods to cope with the large search space in realistic complex environ-
ments. Tree-based search methods like MCTS is just one example of an
informed search algorithm that uses a UCT heuristic to strike a balance
between exploration of new places and exploitation of knowledge about
the world. This boils down to the exploration exploitation dilemma of
deciding whether to explore the action space or exploit current knowledge
at any given time in the simulation.

Real and Simulated Experience

There are now two sources of experience. Real experiences are sampled
from the environment (true MDP) using T (s, a, s′) = P (s′|s, a):

S ′ ∼ P (s′|s, a) (2.14)

R = R(s, a) (2.15)

Simulated experiences are sampled from the model (approximate MDP):

S ′ ∼ Pθ(s
′|s, a) (2.16)

R = Rθ(R|s, a) (2.17)

Car Racing as a Model-based RL Planning Problem

Previously, the car racing environment was interpreted as a search problem
(see 2.1.2) that is solved using a successor function. However, solving it
as a planning problem requires access to a Forward Model (FM), which
is a model that can simulate experiences to enable planning. This is not
currently available, since the car racing environment does not support
simulating outcomes by rolling forward and backward in time. For this
purpose, it is not possible to make copies of the environment (e.g. using
Python deepcopy), since it relies on a mutable Box2D object to maintain
its own internal state (Github 2019).

Thus, we need access to a model (i.e, simulator) that enables simulated
search, which is made possible by learning a model of the environment
like in model-based RL. We can then either learn a policy offline or plan
online using the model. Since the environment is partially observable and
sequential, we will need to use a model that can capture the spatial (veloc-
ity) and temporal (time) dynamics of the environment. We also need to
extend it with the reward needed for planning the next best action avail-
able in the current state. To disregard the Markov property, we may use
RNNs (e.g. with LSTM units) to keep track of long-term dependencies.

2.4. PLANNING 21

2.4 Planning

In this section, we assume that a forward model is given, which estimates
the transition dynamics and rewards of an otherwise unknown RL envi-
ronment to enable planning.

Planning is any method that uses such model to produce or improve a
policy. Thus, the type of agents we are concerned with are planning
agents, which maintain a model of the world and use it to simulate actions.
Based on this, the agent can simulate hypothesized consequences and
decide which action is best to choose. This branch of AI is concerned
with simulated ”intelligence”, which is similar to what humans do when
trying to determine the best possible course of action in any situation by
thinking (i.e, planning) ahead.

Arguably, using a model to do planning with simulated search is similar
to search in symbolic AI where the rules (i.e, dynamics) that govern the
world are learned, instead of using hard coded formulas or rules based on
human domain knowledge and logic.

In this section, we justify not using classical uninformed AI search meth-
ods. Instead, we advocate for either using informed heuristic search meth-
ods (e.g., Monte Carlo Tree Search with UCT) or informed genetic local
search methods based on hill-climbing and evolutionary algorithms.

2.4.1 Planning with Uninformed Classical Search

Given a model, search is one way of finding a policy (action) that will
achieve a goal. In classical planning, we assume the environment to be
fully observable, deterministic, finite, static and discrete (in time, action
and states). Otherwise, searching for a plan may be overwhelmed by
irrelevant actions when exploring the vast state and action search space.

However, when the number of states is large, its applicability is limited
by the requirement to search for only one state at a time. In our case, the
input state space is very large (2563·96·96) and the output is a continuous
action. Typically, this makes the planning problem more difficult, since
the search space of state possibilities that need to be explored by the
planning algorithms grows exponentially with the domain.

Assuming we have a model of the world, the agent has everything it needs
to know that is relevant to planning. Now, the main challenges of AI
and planning are twofold. Firstly, the states (frames in video games or
complex real-world situations) need to be represented in a computationally
tractable way; otherwise, one needs an efficient way of exploring this state
space. Secondly, the model that is planned on might be imperfect, meaning
it cannot unfold the future reliably from the start to a goal state.

22 CHAPTER 2. BACKGROUND

2.4.2 Planning with Informed Heuristic Tree Search:
Simulated Forward Search with Sampling (MCTS)

Since the state space is very large, we do not use traditional search meth-
ods. Instead, we resort to informed search methods like Monte Carlo Tree
Search (MCTS) with a UCT heuristic to explore the most promising ac-
tions only. Sampling is used in MCTS to cope with the large state space
by using random simulations (i.e, MC rollouts) to explore the state space
sufficiently, resulting in better sample efficiency (i.e, fewer experiences
needed to find good policy). Forward search is used in MCTS to select
the best action by searching from the current time step and only looking
into the near short term future.

Simulation-based search is the combination of doing forward search (i.e,
lookahead) into the near future and doing sampling through random sim-
ulations. This is based on the idea that we do not need to solve the full
MDP but only the sub MDP by employing a divide and conquer approach
where we solve sub goals of planning. Instead of trying to find a trajec-
tory that completes a whole track in car racing, one may find a trajectory
that completes segments of the track. Please refer to appendix A.1.3 for
a detailed explanation of how MCTS works.

The reason we spend so much effort understanding and distinguishing
between different AI methods for problem-solving is to be able to cherish
and defend the final choice of AI methods. In reality, there are many
similarities when treating an environment as either a search, reinforcement
learning, or planning problem. Namely, they all stem from using some
search mechanism for problem-solving, which can be viewed as a search
through a huge set of options (search space) to find a desired solution.

Ultimately, we need to understand the big picture of how basic concepts
turned into the foundation of AI today to appreciate the fact that one
may not solve today’s problems using yesterday’s solutions. Given that
CarRacing has a continuous action space, that is not directly compatible
with vanilla tree-based search methods like MCTS with UCT, which is
why we now look into evolutionary planning methods.

Evolutionary Computation (EC)

Evolutionary Computing (EC) is a branch of AI, which is concerned with
optimization algorithms inspired by natural evolution as a strategy for
finding solutions to a problem. Natural evolution is described in a given
environment with a population of individuals that strive for survival and
reproduction. The fitness is determined by the environment and is used to
decide how well individuals succeed in their goals. In a way, it defines their
chances of survival and multiplying as part of further candidate solutions
(Eiben and Smith 2015, p. 13). The idea of doing automated problem
solving using Darwinian principles goes back to the 1940s where Turing
suggested ”genetical or evolutionary search”.

2.4. PLANNING 23

There are four popular implementations (’dialects’) of the EC idea, includ-
ing evolutionary programming (EP), genetic algorithms (GA), evolution
strategies (ES) and genetic programming (GP). Contemporary terminol-
ogy refers to the whole field by evolutionary computing and the involved
algorithms by evolutionary algorithms with each their subarea and genetic
algorithms being the most popular (Eiben and Smith 2015, p. 14).

Evolutionary Algorithms (EA)

There are many variants of evolutionary algorithms but the common idea
is the same: given a population of individuals in some environment with
limited resources (e.g., rewards), competition for those resources causes
natural selection (i.e, survival of the fittest) (Eiben and Smith 2015, p.
25). As such, EA can be seen as a general procedure that evolves individ-
uals of a population. Often, the way the different methods of EA differ
are in their representation of individuals (e.g. string of bits or vector)
and choice of biological operators included (e.g. mutation or crossover or
both). In this work, we will refer to all of these methods by EAs that
consist of a set of required components shown in list 2.4.2.

In EAs, a population of individuals are initially created, which represent
candidate solutions (chromosomes) to a problem. Each solution (pheno-
type) has an encoding (genotype). In order to find the best solution, the
population is evolved in a number of generations where each individual
is evaluated using a fitness function. Individuals with low fitness are re-
placed by offspring of the most fit individuals (elites). This is done using
crossover and mutation operators. As a result, promising genes from fit
individuals remain in the population, whereas suboptimal genes are dis-
carded. Similar to evolution, the goal is to evolve individuals with genes
that make them survive in the environment. We seek an optimal solution
or plan represented as a sequence of actions (genes) in an environment
(game) by exploring a subspace of policies (policy search) using evolu-
tion. An optimal plan can either be learned or planned. Neuroevolution
is a branch of AI that uses evolution to train artificial neural networks
(ANN) that can approximate the policy function. Alternatively, one can
use a model and do online planning with evolutionary search methods.

Evolutionary Algorithm Components:

• Representation: definition of individuals (e.g. bit string or vector)

• Evaluation function: fitness (e.g. reward)

• Population: set of possible solutions (e.g. action space)

• Parent selection mechanism (e.g. tournament-based)

• Variation: crossover (recombination) and mutation (e.g. uniform)

• Survivor selection mechanism (e.g. replacement by elitism)

24 CHAPTER 2. BACKGROUND

2.4.3 Planning with Informed Genetic Local Search:
Rolling Horizon Evolutionary Algorithms (RHEA)

In real-time games, agents have limited time to respond to the environ-
ment. Thus, this requires the presence of a learned policy (offline learn-
ing) or a model to enable planning with a rolling horizon search procedure
(online learning). For the latter purpose, evolutionary algorithms have
shown to be a viable alternative to MCTS that can cope seamlessly with
continuous action spaces (Perez, Simon M. Lucas, et al. 2013).

For this purpose, Rolling Horizon Evolutionary Algorithms (RHEA) may
be used to do policy search in a subspace of policies by planning on a model
while coping with a continuous action space. These are algorithms, which
”encode individuals as sequences of actions”. Rolling Horizon (RH) refers
to how the first action of a plan is executed in one game step before the
plan is reevaluated and adjusted, looking one step further into the future
and slowly expanding the ’horizon’ (Gaina, Simon M. Lucas, and Pérez-
Liébana 2017, p. 2). Evolutionary Algorithms (EA) refers to algorithms
inspired from biology that encode solutions to problems as individuals
that are part of a population evolved over several generations until a
good solution is found or a budget is reached.

RHEA uses such population but we also consider the simplest RHEA vari-
ant with a population of one, which is the single-agent Random Mutation
Hill Climber (RMHC) that uses a hill-climb optimization procedure. Indi-
viduals are evaluated by performing actions using a dynamics function in
a forward model (simulation) and using the reward function to determine
their fitness. The RHEA algorithm continuously evolves plans for a lim-
ited time frame in the simulated world model before transferring its best
policy (plan) back into the real environment. This approach is interesting
because most popular RL methods today learn a policy offline in video
games. In contrast, this idea relies solely on a model and evolution to do
simulated-based search that can cope with continuous action spaces.

RHEA evolves a population of individuals encoded as sequences of actions
over multiple generations during a limited time budget. First, it initializes
a population of uniformly random individuals. Initially, it may choose to
do elitism by promoting one or two of the individuals with the highest
fitness (here considered to be the total reward achieved in the simulated
environment during planning). Subsequently, it uses tournament selection
where a random subset of the population is used to select the parents of
the offspring, such as the elites of the subset that have the highest total
reward. Two parents are repeatedly sampled this way and used to produce
offsprings (children) by (uniform) crossover (recombination). Finally, the
children may be mutated by uniformly replacing an arbitrary action in
its sequence of actions. The individuals in the evolved population are
then evaluated by executing their sequence of actions with a model in
the simulated environment, which is known as a simulated rollout (i.e,
imagined future trajectory). The whole procedure is shown in figure 2.4.

2.4. PLANNING 25

Figure 2.4: RHEA Flow Diagram (Gaina, Simon M. Lucas, Pérez-Liébana,
et al. 2017)

Performance

Typically, evaluating the fitness of all individuals in the population is
the most time-consuming part. Thus, one may run the fitness evaluation
across multiple individuals concurrently. Another problem is that of Pre-
mature convergence in genetic algorithms that often converge too early
into a suboptimal solution due to insufficient exploration of the search
space. In this regard, it is crucial to use genetic operators (e.g. mutation)
that encourage diversity because crossing over a homogeneous population
may not yield new solutions. Diversity may be encouraged by doing uni-
form crossover, increasing the population size, or using a good mutation
operator. RHEA also depends on the initial population used, which may
be initialized with other search methods like MCTS, instead of random
search. Considering these approaches may help ensure that RHEA does
not get stuck in a local optima space.

Random Mutation Hill Climbing (RMHC)

Random Mutation Hill-Climb (RMHC) is a simple and effective type of
evolutionary algorithm that repeats the process of randomly selecting a
neighbour of a best-so-far solution and accepts the neighbour if it is better
than or equal to the current individual. Thus, it is a RHEA variant with
a single individual and a random hill-climb procedure to search in the
policy subspace (i.e, action space). This local search method starts with
a complete solution and iteratively tries to improve it by taking random
steps or restarting with another assignment. Thus, RMHC is also referred
to as Stochastic Hill Climbing (Deepa 2008, p. 27). The method is very
efficient for problems with well-behaved continuous fitness functions that
use gradients to guide the search. It will converge towards the optimal
solution if the fitness function is continuous and is unimodal (i.e, only has
one peak). However, in complex environments, the fitness function may
have many peaks, making the algorithm likely to stop on the first peak it
finds even if it is suboptimal. To avoid a local optimum, one may repeat
multiple hill climbs at each time starting from different random positions.
Otherwise, the method relies on a good mutation operator.

26 CHAPTER 2. BACKGROUND

Pseudocode

Algorithm 1: Random Mutation Hill Climb (RMHC)

Input : l ∈ N: individual length (horizon)
d ∈ N: dimension of search space (discrete for illustration)

Output: First action of best individual (elite plan)
1 Randomly initialise an individual x ∈ Rl×d (uniform);
2 while time not elapsed do
3 Select the element i ∈ x to mutate;
4 y ← x after mutating i ∈ x (random mutation uniform);
5 Fity ← fitness(y);
6 if Fity ≥ bestF itSoFar then
7 x← y Update the best-so-far individual;
8 bestF itSoFar ← Fity
9 end

10 end
11 return x[0]

Algorithm 2: Rolling Horizon Evolutionary Algorithm (RHEA)

Input : l ∈ N: individual length (horizon);
d ∈ N: dimension of search space (discrete);
µ ∈ N− {1}: population size (µ = 1 is RMHC)

Output: First action of best individual (elite plan)
// population = {x0, . . . , ..., xµ−1} where |population| = µ

1 population ← {}, elite ← {};
2 for i← 0 to µ− 1 do
3 xi ← Uniform random individual xi ∈ Rl×d // initialize

4 population ← population ∪ {xi} // add individual to population

5 end
6 while time not elapsed do
7 for i← 0 to µ− 1 do
8 Fitxi ← fitness(xi) // evaluate individuals

9 end
// elitism: promote best individual to next population

10 elite ← {e ∈ population|Fite = max{Fitx|x ∈ population}};
11 for i← 0 to µ− 1 do

// random subset: pop ⊆ population, |pop| = |population|
2

12 pop← tournament(population) // selection

13 Fita ← max{Fitx|x ∈ pop};
14 parenta ← {x|x ∈ pop, fitness(x) = Fita};
15 Fitb ← max{Fitx|x ∈ pop− {parenta}};
16 parentb ← {x|x ∈ pop− {parenta}, F itx = Fitb};
17 child← crossover(parenta, parentb) // uniform recombination

18 child← mutate(child);

19 end

20 end
21 return elite[0] // NB: after evaluating final population and elite

2.4. PLANNING 27

2.4.4 N-Tuple Bandit Evolutionary Algorithm

The parameter configuration in a planning algorithm may have a vital
influence on how well the agent can plan towards an optimal trajectory.
Thus, we now consider the task of how to tune these parameters.

Grid search is an exhaustive approach where each possible parameter con-
figuration is a point in a grid space. The grid is exhaustively searched until
the optimal parameter configuration is found. While grid search may find
the optimal parameter configuration, this approach is very computation-
ally expensive. The parameter space defined for the planning algorithms
may yield an enormous number of possible configurations, making grid
search infeasible. Instead, the N-Tuple Bandit Evolutionary Algorithm
(NTBEA) is used to tune the parameters of RHEA and RMHC.

NTBEA is an evolutionary algorithm that uses a model to estimate the
fitness of new parameter configurations in the search space, while using
a bandit approach to balance exploration and exploitation in the search
space. NTBEA was developed and applied to RMHC by (Kunanusont,
Gaina, and et.al. 2017) and also applied to RHEA (Simon M Lucas, Liu,
and Perez-Liebana 2018) with promising results. Its ability to balance
the trade-off between exploring and exploiting parameter configurations
is beneficial, as it provides a way to avoid being trapped in a local op-
tima of the parameter space, while still exploiting promising configura-
tions. This makes NTBEA an effective approach for finding a somewhat
promising configuration when tuning the parameters, since it does not
exhaustively explore the parameter search space, but instead focuses its
search in regions with promising parameter configurations only.

Key Components of NTBEA

NTBEA consists of three main components; a bandit landscape model,
an evolutionary algorithm and a fitness evaluator.

The bandit landscape model is a model of the fitness landscape that
is built and updated iteratively using the evaluations of solutions (i.e.,
parameter configurations). It uses a n-tuple system to model this fit-
ness landscape that works as follows; provided a d-dimensional parameter
search space (i.e., all possible d parameters), the parameter search space is
then sub-sampled by its dimensions with several n-tuples where n ranges
from 1 to d dimensions. For example, given a 2-dimensional search space
with two parameters that each take two values, p1 ∈ (1, 2) and p2 ∈ (a, b),
then the 1-tuple would be set of all possible parameter values for each of
the two parameters: {(1), (2), (a), (b)}. Likewise, the 2-tuple would be the
set of all possible parameter value combinations across both parameters:
{(1, a), (1, b), (2, a), (2, b)}. This generalizes to any n-tuple ranging from
1 to n. Together, these n-tuples constitute the points (i.e, parameter con-
figuration solutions) in the fitness landscape. Each n-tuple has a look-up
table that contains the frequency at which a given parameter configura-
tion in the n-tuple is encountered and the sum of the fitness associated
with the evaluation of that particular parameter configuration.

28 CHAPTER 2. BACKGROUND

The evolutionary algorithm component is responsible for finding the
next promising point (i.e., parameter configuration) to be evaluated. Due
to the large search space, it may be impracticable to evaluate each point.
Instead, we model the relationship between the points and sample ac-
cordingly. Given some arbitrary current point, the algorithm will create
k neighboring points, in which the proximity is defined by a mutation op-
erator that uniformly mutates the current parameter configuration. Once
the neighborhood is created, an Upper Confidence Bound (UCB) value
is calculated for each neighbor point. Each parameter dimension in the
search space is represented as an independent, multi-armed bandit where
each arm represents a parameter value. The UCB of any arm i in a given
parameter dimension d is calculated with equation 2.18 (Simon M Lucas,
Liu, and Perez-Liebana 2018):

UCBi = X̂i + k

√
lnn

ni + ε
(2.18)

where X̂i is the mean fitness obtained for picking value i in the evaluation
of parameter d, k is the exploration factor, n is the frequency of evalua-
tions with a particular parameter d and ni is the frequency at which it is
evaluated with a particular value i.

The mean fitness X̂i acts as an exploitation term and
√

lnn
ni+ε

as en ex-

ploration term. High k values promote exploration, whereas low k values
promote exploitation. ε controls whether each parameter value should be
used at least once. If ε is 0, then each parameter value is visited, which
results in exhaustive exploration of the search space that is infeasible.

The combinations of parameter values across dimensions are modelled
as super-bandits, which can test combinations of different parameters.
Namely, in a d-dimensional parameter space where each parameter can
take on n possible values, the super bandit would have nd arms (i.e.,
parameter combinations). Hence, the final UCB value of a given point
uses a modification of equation 2.18 where all n-tuples are aggregated and
the computed UCB value is an unweighted arithmetic average as shown
in equation 2.19 (Simon M Lucas, Liu, and Perez-Liebana 2018):

UCB(x) =
1

d

d∑
j=1

UCBNj(x) (2.19)

where x is a point in the parameter search space, d is the number of dimen-
sions, Nj(x) is the n-tuple indexing function that indexes the jth bandit
(i.e., parameter) in point x (i.e., configuration). Finally, the evolutionary
algorithm will return the point with the highest UCB value.

Evaluator function is the final component that takes the point returned
from the evolutionary algorithm and evaluates it on the problem domain.
The reward obtained from the evaluation is used as the fitness value of
the point and added to the fitness landscape bandit model.

2.4. PLANNING 29

Algorithm 3: N-Tuple Bandit Evolutionary Algorithm (NTBEA)

Input : S: parameter search space
fitness: evaluator function
n ∈ N: number of neighbours
p ∈ [0, 1]: mutation probability
iterations: maximum number of evaluations

Output: most promising parameter configuration
1 i = 0 // parameter configuration evaluation counter

2 model← {} // initially empty fitness landscape model

3 x← random point x ∈ S
4 while i < iterations do
5 Fitx ← fitness(x) // evaluate parameter configuration

6 model.add(x, F itx) // add point to model landscape

7 neighbours← neighbours(model,x, n, p) // mutation

8 x← arg maxx′∈neighbours UCB(x′) // find most promising point

9 i← i+ 1

10 end
11 return evaluate(model) // point with highest mean fitness in model

12

13 Function neighbours(model, x, n, p):
14 neighbours← {}
15 while (|neighbours| <= n) do
16 x′ ← mutate(x, p)
17 if x′ 6∈ neighbours then
18 neighbours.add(x′)

19 end

The algorithm - The NTBEA algorithm is demonstrated in algorithm
3 and works as follows. An initially random parameter configuration is
selected from the parameter search space and set as the current point.
The algorithm then proceeds by repeating the following steps, until the
maximum number of iterations has been reached:

• Evaluate current point to get its fitness (line 5)

• Add current point and its fitness to the n-tuple landscape model
(line 6)

• Get n distinct neighbour points by using a mutation operator on the
current point (line 7 and 13)

• For each point in the neighbourhood, calculate the UCB values and
return the point with highest the UCB value (line 8)

• The highest UCB point is set as the current point

Finally, the best point is returned by retrieving the point with the highest
mean fitness in the n-tuple landscape model. This point represents the
most promising parameter configuration the algorithm was able to find.

30 CHAPTER 2. BACKGROUND

2.5 Artificial Neural Networks (ANN)

In this section, we consider a branch of Machine Learning called Artificial
Neural Networks (ANN), which are inspired by the human brain and
used to capture complex non-linear patterns. Neural networks produce an
output from an input and belong under the realm of subsymbolic AI, which
is concerned with implicitly represented models that are learned from
experience (Bolander 2019). We will consider a range of neural network
architectures to learn a model (dynamics, reward) of a complex video
game environment that enables planning with simulation-based search.

2.5.1 Feed-Forward Neural Network (FNN)

Feedforward neural networks (FNN) are artificial neural networks (ANN)
where the connections (weights) between neurons (units) do not form a
cycle and information only travels forward in the network. FNNs are
mainly used for supervised learning when the data to be learned is not
sequential or time-dependent. That is, FNNs try to compute a model
function f on input x such that f(x) ≈ y for training pairs (x, y).

Single-layer Perceptron (SLP) - Linear Feed-Forward

The perceptron was invented by Frank Rosenblatt (1957) and is the most
basic processing element in an ANN, best described as a single-layer neu-
ral network used for linear classification (binary) in supervised learning.
The perceptron receives inputs x ∈ Rd from an environment that are all
connected by a weight wj ∈ R and the output, y, is a weighted sum of
the inputs:

y =
d∑
j=1

wjxj + w0 = w0 + w1x1 + . . . wdxd (2.20)

where w0 is the intercept (bias). Assuming w0 is a weight coming from an
extra bias unit, x0, we can rewrite the output of the perceptron as a dot
product using general matrix-vector notation:

y = wTx (2.21)

where w = [w0, w1, . . . , wd]
T and x = [1, x1, . . . , xd]

T are augmented to
include bias, weight and input. Notice, for d = 1 we have y = wx +
w0, which is the equation of a line with w0 intercept and w as slope.
The perceptron defines a linear hyperplane that divides the input space
into two: a positive and negative half-space. This is known as a linear
discriminant function that can separate two classes by the sign of the
output using a threshold function. The perceptron uses a step activation
function to determine the output H(x) = 1 if x ≥ 0 else 0. This decides
if each neuron should be activated, depending on whether each neuron’s
input is relevant to the prediction. The activation is then used as output
for binary classification: o = 1 if wTx ≥ 0 else 0.

2.5. ARTIFICIAL NEURAL NETWORKS (ANN) 31

Training: Gradient Descent Backpropagation (Chain Rule)

An error function is used to measure how well our model predictions o are
compared to the true values y across n training examples

X = {(x1, y1), . . . , (xn, yn)} (2.22)

using a loss function L(oi, yi) = (oi − yi)2 s.t.

E(X) =
1

n

N∑
i=1

(oi − yi)2 =
1

n
(g(wTx)− yi)2 (2.23)

where g(x) is the particular activation function used by the perceptron
as ouput o = g(wTx). Learning corresponds to iteratively updating the
values of the weights and biases denoted θ = 〈w, b〉 of our model, using
an optimization procedure like gradient descent to minimize the error
function E(X) by adjusting the model parameters in the direction of the
negative gradient of the error function:

θt+1 = θt − α
∂E(X)

∂θ
(2.24)

θi are the values of the model parameters after the ith iteration of gradient
descent, ∂f

∂x
is the partial derivative of f with respect to x and α is the

learning rate, which controls the step size gradient descent takes each
iteration. Values of α that are too large cause learning to be suboptimal
(failing to converge), while too small values make learning slow.

Backpropagation (”backward propagation of errors”) calculates the gradi-
ent of the error function with respect to each weight in the neural network.
The ”backwards” part is because one finds the gradient of the final layer
of weights, which is propagated back to the preceding layer so that par-
tial computations of the gradient from one layer are reused for computing
the gradient of the previous layer. The backpropagation algorithm is de-
rived using the chain rule (calculus) on the partial derivatives of the error
function:

∂E

∂wlij
=
∂E

∂alj

∂alj
∂wlij

(2.25)

, where alj is the product-sum output of neuron j in layer l with input i
before it is passed to a (non-linear) activation function (e.g. sigmoid) to
generate an output. This decomposition of the partial derivative states
that the change in the error function due to a weight is a product of the
change in E due to the activation alj times the change in the activation
due to the weight wlij. Backpropagation uses the chain rule to find the
derivative of the composite function o = g(wTx) and propagates the error
back to adjust each weight based on their error contribution.

32 CHAPTER 2. BACKGROUND

Multilayer Perceptron (MLP) - Non-Linear Feed-Forward

A perceptron with a single layer of weights can only approximate linear
functions of the input, so we need to consider a non-linear discriminant
instead to capture the dynamics of a complex environment. Hence, we
consider another ANN called a Multilayer Perceptron, which is a feedfor-
ward network with intermediate hidden layers that uses non-linear sigmoid
activation functions between the input and output layers to enable non-
linear function approximation. MLPs are organized into layers with an
input lyayer, zero or more hidden layers and an output layer. Input x is
fed to the input layer, the (linear) ”activation” wT

hx propagates forward
and the values of the hidden units zh are perceptrons, in which we apply
a non-linear sigmoid function σ(x) = 1

1+e−x
to its weighted sum:

zh = σ(wT
hx) =

1

1 + exp(−(
∑d

j=1whjxj + wh0))
, h = 1, . . . , H (2.26)

The output y is a perceptron in the 2nd layer taking hiddens as inputs:

y = wTz =
H∑
h=1

whzh + w0, (2.27)

where there is a bias unit in the hidden layer (z0) and w0 are the bias
weights. The input layer of xj is not counted due to its lack of computation
so when there is a single hidden layer and an output layer, it is called a
two-layer network (see 2.5). whj means weight from input j to unit h.

Figure 2.5: MLP Forward Pass (Dalgaard 2019, p. 16)

The most important contribution of a feed-forward network with a single
layer and a non-linear activation, stems from the fact that an MLP with
one hidden layer can learn any non-linear function of the input (Alpaydin
2014, p. 283). This is known at the universal approximation theorem,
which states any continuous function can be approximated with a multi-
layer perceptron, given enough hidden units that use non-linear activation
functions. Stacking many hidden units with non-linear outputs allows us
to make piecewise approximations of a non-linear function

2.5. ARTIFICIAL NEURAL NETWORKS (ANN) 33

2.5.2 Reconstruction - Auto Encoders (AE)

A vanilla Autoencoder (AE) is an MLP-like ANN with a feed-forward ar-
chitecture consisting of an input layer, an output layer and one or more
hidden layers. Unlike an MLP, it is an unsupervised learning model that
tries to reconstruct its inputs instead of predicting a target value (super-
vised). Thus, an autoencoder is a neural network trained to attempt to
copy its input to its output (Goodfellow, Bengio, and Courville 2016, p.
493). Its goal is to learn a compressed latent representation (encoding or
code) of the input data that may be used to efficiently reconstruct (i.e., de-
code) the input. Internally, it has a hidden layer h that describes a latent
code z used to represent the input. The network consists of two neural
networks; an encoder function h = f(x) and a decoder that produces a
reconstruction r = g(h). Notice, it does not learn to predict g(f(x)) = x
everywhere, since such a model would not be useful. Instead, the model
is forced to determine, which parts of the input should be copied to learn
useful properties of the data that minimize a reconstruction error (e.g.,
MSE) between the actual and predicted input shown in figure 2.6.

Figure 2.6: Autoencoder Architecture (Weng 2018a)

Traditionally, autoencoders were mainly used for dimensionality reduction
or learning useful features. Today, theoretical breakthroughs in connect-
ing autoencoders and latent variable models have made it possible to use
autoencoders for generative modelling. Modern autoencoders have gener-
alized the idea of an encoder and decoder beyond deterministic functions
to stochastic functions Pencoder(z|x) and Pdecoder(x|z) (Goodfellow, Ben-
gio, and Courville 2016, p. 493). This is called a generative model that
learns a distribution of the input data using unsupervised learning. The
main purpose of the vanilla AE is deterministic input reconstruction, so it
is not a generative model. The two most popular approaches for genera-
tive models are Generative Adversarial Networks (GANs) and Variational
Auto Encoders (VAE). The Variational Auto Encoder (VAE) is a gen-
erative extension to the AE, making it possible to predict a distribution
over the input that better captures the uncertainty in our reconstruction
errors.

34 CHAPTER 2. BACKGROUND

2.5.3 Deep Neural Networks (DNN)

A Deep Neural Networks (DNN) is an artificial neural network with multi-
ple hidden layers between the input and output layers. Thus, an MLP with
multiple hidden layers is an example of a DNN where each hidden layer has
its own weights and apply the sigmoid function to its weighted sum. This
is just a composed function with multiple nested hidden activations zi in
layers i ∈ [1, . . . , l] and output y(zl(zl−1(. . . z1(x)). Convolutional Neural
Networks (CNN) are DNNs that use local information in computer vision
for image recognition. Recurrent neural networks (RNNs) are DNNs that
model sequential data with feedback loops (back to the past), capturing
temporal dynamic behavior. Auto Encoders (AE) are similar to deep
feed-forward MLPs, except they are unsupervised and aim to learn to re-
construct input. Mixture Density Networks (MDN) are neural networks
that models the distribution of data as a mixture model.

2.5.4 Representation - Convolutional Networks (CNN)

”Convolutional neural networks (LeCun, 1989) are a specialized kind of
neural network for processing data that has a known grid-like topology
(e.g., 2D images). They use a linear convolution operation in place of
general matrix multiplication, in at least one of their layers” (Goodfellow,
Bengio, and Courville 2016, p. 321). CNNs are typically used in computer
vision tasks where the image input has a local structure. Namely, nearby
pixels are correlated and images have local features like edges, corners and
objects. They solve the problem of a large parameter space in DNNs with
fully connected layers through the use of partially connected layers and
weight sharing.

A CNN can be seen as a structured MLP where each unit is connected
to a local group of units because not all inputs are correlated. Instead,
only a set of hidden units define a window (filter or kernel matrix) over
the input space and are only connected to a local subset of the inputs.
This decreases the total number of connections and reduces the number
of free parameters. This may be repeated across multiple layers. Each
layer is only connected to a small number of local units and checks for
increasingly more complicated features by combining past features in a
larger part of the input space until the output layer is reached. (tutorial)
The inputs are the pixels and the first layer may learn to detect edges,
whereas the second hidden layer may use the first hidden layer to learn
more combinations of edges. Doing this across multiple layers serves as a
kind of hierarchical learning where fewer features get more complex and
abstract, until reaching the output of the network. The work of each
hidden unit is called a convolution of its input with its weight vector
(filter or kernel). The number of parameters can be reduced further by
weight sharing, in which different units have connections to different inputs
while sharing weight values. Thus, CNNs learn local structures of the
data with fewer parameters than a fully-connected MLP without structure
(Alpaydin 2014, p. 295).

2.5. ARTIFICIAL NEURAL NETWORKS (ANN) 35

The layers that consist of hidden neurons that are not connected to every
input neuron (image pixel) but only to a local region (receptive field)are
called the convolutional layers. Each neuron in the second convolutional
layer is only connected to neurons in a local region of hidden units from the
first layer. Consequently, the CNN focuses on learning low-level features in
early layers and high-level features in the final hidden layers. This is useful
to learn a visual representation of 2D video game environments whose
patterns are inherently non-linear and hierarchical. For this purpose, a
deep convolutional neural network can be used with convolutions to detect
regional patterns and non-linear activation functions (e.g., ReLu σ(x) =
max(0, x)) to capture non-linearities.

A filter is the small set of learnable weights that store a single pattern
represented by a small image, the size of the receptive field, which corre-
sponds to the input space that affects a particular unit of the network.
A convolution is the process by which a filter moves over an image to
find the most essential features. A set of filters (convolution kernels) is
used to slide over the original image input to learn different hierarchical
structures inherent in the data. A convolution works by applying such
filter repeatedly to the input, which convolves (slides) over every S × S
block of the input and computes the dot product of the filter matrix with
the input pixel block values as the output. The output is called a feature
map and serves as a compressed highlight of the features in the image
that activates the filter the most. This is repeated across the layers into
filters that activate on increasingly complex patterns. The stride is the
number of pixels by which the filter moves over the input (e.g., 1 below).
The padding is the number of pixels added to the input image when it is
processed by the filter (kernel) of the CNN. Using zero padding will retain
the dimensions of the input in the convolution output by adding zeros
around the inputs. Typically, this is done before the convolution and may
be followed by max pooling, which further reduces the dimensionality of
the input space by using a max filter.

Figure 2.7: Convolution (Weng 2018a)

Deep RL agents use CNNs to approximate a representation and value
function of a complex environment directly from raw high dimensional
visual inputs. CNNs are also used in AEs to reconstruct input (ConvAE)

36 CHAPTER 2. BACKGROUND

2.5.5 Sequential - Recurrent Neural Networks (RNN)

”Recurrent neural networks (RNNs) are a family of neural networks for
processing sequential data” (Goodfellow, Bengio, and Courville 2016, p.
364). CNNs are specialized for processing images, whereas RNNs are good
at processing a sequence of values by learning a function f on variable-
length input Xt = {x1, . . . , xt} such that f(Xt) ≈ yk for training pairs
(Xn, Yn) ∀ 1 ≤ t ≤ n where n denotes the total number of minibatches of
such sequences of length t.

To go from MLPs to RNNs, we use the idea of parameter sharing across
the model like the CNN. RNNs are recurrent due to cycles (feedback
loops) in the network, which represent the influence of the present value
of a variable on its own value in a future time step. Such a computational
graph is represented by unfolding a recursive or recurrent computation
with a repetitive structure (chain of events). This is used to represent a
dynamical system in equation 2.28, which describes the state of a system
s(t) as a function of the past s(t−1) parameterized by θ and is recurrent
because the definition of s at time t refers back to the same definition at
time t− 1 (Goodfellow, Bengio, and Courville 2016, p. 365):

s(t) = f(s(t−1);θ) (2.28)

The dynamical system in equation 2.28 may be extended with an external
input signal x(t) to capture information about the past sequence:

s(t) = f(s(t−1),x(t);θ) (2.29)

Equation 2.30 is usually employed to define the values of hidden units in
RNNs where h is used to represent the state of the RNN:

h(t) = f(h(t−1),x(t);θ) (2.30)

An RNN adds an output layer that read information of the hidden state
h to make predictions. The RNN is then trained to perform a task that
requires predicting the future from the past where h(t) is used as a lossy
summary of relevant information in the past sequence of inputs up to time
t. Equation 2.30 shows that RNN can retain past information by tracking
the state of the world (h) and updating it as it moves forward (unrolls).
The unfolded recurrence after t steps is represented with a function g(t).

h(t) = g(t)(x(t),x(t−1), . . . ,x(1)) = f(h(t−1),x(t),θ) (2.31)

2.5. ARTIFICIAL NEURAL NETWORKS (ANN) 37

The function g(t) takes the sequence (x(t),x(t−1), . . . ,x(1)) as input to pro-
duce the current state and the unfolded recurrent (recursive) structure is
used to factorize g(t) into repeated application of a function f . The un-
folding ensures the model always has the same input size, regardless of the
sequence length. This is defined in terms of transitions from one state to
another, instead of the variable length of the history of states. Further, it
allows us to use the same transition function f with the same parameters
at each step. As a result, a RNN can learn a single model f that operates
on all-time steps and sequence lengths. Thus, the RNN can be used on
sequence lengths that were not present in the training data, as it does
not need to learn a separate model g(t) for all time steps. Intuitively, the
recurrent graph conveys the idea of information flowing forward in time
(outputs and loss) and backward in time (gradients) in a succinct way.

Figure 2.8: Vanilla RNN (Yau 2018)

The RNN is trained by repeatedly unfolding the network one time step and
then applying the backpropagation algorithm (”Backpropagation through
time”). Teacher forcing can be performed during training where the model
receives the ground truth output y(t) as input at time t+1. The sequences
can be rather long, so the unrolled RNN tends to be very deep. As a
result, the partial derivatives of the gradient may tend to get smaller, as
we move backward through the hidden layers, meaning the earlier layer
neurons learn more slowly than later layers. This is called the vanishing
gradient problem where the product of the chain of partial derivatives in
the early layers becomes increasingly small when the partial derivatives
are smaller than 1, until the weights reach zero, making them inactive.
Likewise, the product of partial derivatives may explode if they are all
beyond 1, which is just solved by clipping the gradients to below 1.

The problems occur in deep neural networks with gradient-based meth-
ods using backpropagation. The weights are updated proportional to the
partial derivative of the error with respect to the current weight value in
each training iteration. For DNNs, we end up multiplying partial deriva-
tives many times. This may either lead to infinitely small or large partial
derivatives used to update the weights. For small partial derivatives (< 1),
the weight updates become insignificant, making them unable to change.
In general, this happens because we use non-linear activation functions
(e.g. σ(x) = 1

1+e−1) to capture non-linear patterns, which squeeze the in-
puts into very small output ranges (e.g., sigmoid maps x ∈ [0, 1 and tanh
to [−1, 1). Hence, a large region of the input space is mapped to small
ranges, so the gradients become increasingly small.

38 CHAPTER 2. BACKGROUND

This is worsened by the fact that we stack many layers of non-linearities
in DNNs. To solve this, we may use activation functions that do not
squash the input like the Rectified Linear Unit (ReLU) σ(x) = max(0, x).
However, this kind of activation function is subject to the dying ReLU
problem where a neuron that is initially negative is unlikely to recover.

Long Short-Term Networks (LSTM)

The Long Short Term Memory Networks (LSTM) is a gated RNN based
on the idea of a gated recurrent unit” (Goodfellow, Bengio, and Courville
2016, p. 397). Unlike RNN, LSTMs are capable of learning long-term de-
pendencies and cope with short-term memory due to vanishing gradients.

Compared to the RNN, both use Backpropagation through time (BPTT)
for training and both use a recurrent structure with repeating modules. In
standard RNNs, this repeating module is typically a single tanh layer. In
contrast, the LSTM uses three sigmoid neural networks (gates) and point-
wise operations (e.g., vector addition) to learn what information should
be included, forgotten and output, making short-term memory less of an
issue for the LSTM. The sigmoid gates output a number between 0 and 1
that denotes how much information is let through each component where
0 means nothing and 1 means everything. Another key component of
the LSTM is the cell state Ct, which acts as a small buffer of information
passed through the chain of LSTM layers. As the cell state passes through
each of the four LSTM layers, it may be modified by the gates, depending
on the current input xt and previous hidden state ht−1.

Figure 2.9: LSTM Memory Cell and Gating flow

2.5. ARTIFICIAL NEURAL NETWORKS (ANN) 39

The core flow of a single LSTM cell is shown in figure 2.9 and works as
follows: Given some input vector xt and previous hidden state ht−1, the
LSTM concatenates both vectors and passes the result through the first
forget gate. Based on ht1 and xt, the forget gate decides what informa-
tion is kept or removed from the previous cell state ct−1. The output of
the forget gate ft = σ(Wf · [ht−1, xt] + bf) is then a filter vector that is
multiplied to the cell state Ct−1.

The next step for the LSTM is to decide what new information is to
be added to the cell state, which is a two-fold operation. As previously,
the LSTM inputs the concatenated vector to the second input gate and
a tanh layer. The input gate decides, which values are updated; it =
σ(Wi·[ht−1, xt]+bi), while the tanh layer outputs a vector of new candidate
values Ĉt = tanh(WC · [ht−1, xt] + bC). Both it and Ĉt are multiplied
together to create a vector of new information to include in the cell state.
The cell state Ct is then a linear combination of the forget gate and input
gate Ct = ft · Ct−1 + it · Ĉt.

Finally, the LSTM computes its current hidden state ht, which is also a
two-fold operation that is based on the updated cell state Ct and concate-
nated vector (ht−1 and x). Recall, the hidden state contains all informa-
tion on past inputs. As previously, the LSTM inputs the concatenated
vector into the final output gate. The output gate decides what informa-
tion in the cell state Ct is used to form the current hidden state ht by
outputting a filter vector ot = σ(Wo · [ht−1, xt] + bo). Simultaneously, the
LSTM passes the cell state Ct through a tanh operator to squeeze the val-
ues between -1 and 1. Finally, the LSTM forms the current hidden state
through multiplication ht = ot · tanh(Ct). Both the current cell state Ct
and hidden state ht are then passed to the next cell in the LSTM where
the same process is repeated. The equations are shown together below:

ft = σ(Wf · [ht−1, xt] + bf) (forget gate)

it = σ(Wi · [ht−1, xt] + bi) (input gate)

Ĉt = tanh(WC · [ht−1, xt] + bC) (candidates)

Ct = ft · Ct−1 + it · Ĉt (cell state)

ot = σ(Wo · [ht−1, xt] + bo) (output gate)

ht = ot · tanh(Ct) (hidden state)

(2.32)

40 CHAPTER 2. BACKGROUND

2.5.6 Uncertainty - Mixture Density Networks (MDN)

In general, the most popular output types in a neural network are the
linear, sigmoid and softmax units. Normally, we consider neural networks
that represent a function f(x;θ) where the outputs are predictions of
the target value y. Now, instead we may also consider to approximate a
conditional distribution p(y|x;θ) where maximum likelihood suggests we
use the negative log-likelihood −log p(y|x;θ) as loss function.

As a result, the outputs of such function are not the direct predictions of
the target y. Instead, the outputs are the parameters of a distribution
over y. The goal of supervised learning is then to model a conditional
distribution p(y|x), which is often modelled using a Gaussian distribu-
tion. However, data in most real-world domains does not simply admit
a unimodal (i.e., single peak) Gaussian distribution but, rather, follows
a multimodal non-Gaussian distribution. Thus, we seek a way to model
complex conditional probability distributions in the real world.

This can be achieved by using a semi-parametric mixture model that de-
scribes p(y|x) as a linear combination of a mixture of parametric densities
where each component k has its own density function p(y|θk(x)), propor-
tional to its mixing coefficient πk. A Mixture Density Network (MDN)
is a neural network that is typically used as the output in flexible neural
networks (e.g., RNN) to approximate any arbitrary conditional density
function p(y|x) of which the Gaussian mixture model is the most popular
(2.33):

p(y|x) =
K∑
k=1

πk(x)N(y|µk(x),σ2
k(x)) (2.33)

Figure 2.10: Mixture Density Network (Bishop 2006, p. 274)

2.5. ARTIFICIAL NEURAL NETWORKS (ANN) 41

The parameters of the mixture model are the mixing coefficients πk(x),
means µk(x) and the variances σ2

k(x), which the Mixture Density Network
uses to approximate a conditional distribution as a mixture model, which
is typically used as output in a conventional neural network that takes
x as its input. The neural network in figure 2.10 could be a two-layer
network of hidden units with non-linear sigmoidal (e.g. ’tanh’) activation
functions.

Given K components of the mixture model and L target components in
y, the MDN will have K output unit activations aπk that determine the
mixing coefficients πk(x), K outputs aσh that determine the kernel widths
σk(x) (variance) and K × L outputs aµkj that determine the components
µkj(x) of the kernel centres µk(x) (mean). The mixing coefficients satisfy
the probability axioms (Equation 2.34):

K∑
k=1

πk(x) = 1 , 0 ≤ πk(x) ≤ 1 (2.34)

This is achieved by using the softmax activation as output to normalize
each of the mixture components (Equation 2.35)

πk(x) =
exp(aπk)∑K
l=1 exp(a

k
l)

(2.35)

Further, the variances must also be non-negative σ2
k(x) ≥ 0 so they are

represented by the exponential activations (Equation 2.36)

σk(x) = exp(aσk) (2.36)

Finally, the means µk(x) are represented by the network output activa-
tions, since they are real components (Equation 2.37):

µkj(x) = aµkj (2.37)

The MDN is trained by using the maximum likelihood of minimizing the
error function, defined by the negative logarithm of the likelihood (Equa-
tion 2.38) under the IID assumption where w are the weights and biases:

E(w) = −
N∑
n=1

log

{
K∑
k=1

πk(xn, w)N(yn|µk(xn, w), σ2
k(xn, w)

}
(2.38)

Chapter 3

Related Work

This chapter surveys previous work in learning models of the environment
that facilitate planning (model-based RL). Recall a model M = 〈T,R〉
consists of a transition dynamics function and a reward function. In this
regard, there are many ways of learning these components and most ap-
proaches approximate these functions using deep neural networks. They
are either trained component-wise or end-to-end using gradient-free meth-
ods such as evolution (neuroevolution) or using gradients-based methods
such as backpropagation and gradient descent. Given the setting where
an agent, with an internal model, needs to continually act and learn in the
world, a common theme in this work is a choice between two approaches
to decide how to act: the model-free learned approach or the model-based
planning approach.

In general, the learned approach uses a model of the environment and
then learns a policy by training a deep neural network to approximate a
distribution over actions given states π∗(a|s) = argmaxπVπ(s). The goal
is to pick the action that maximizes the return (expected total reward)∑T

t=0 rt where rt is the reward at time t and T is the horizon.

The planning approach uses the model to learn or search for a policy.
The latter (i.e. planning with search) is usually done with Monte Carlo
Tree Search (MCTS) to do simulation-based search by forward search and
sampling. Alternatively, recent work shows Rolling Horizon Evolutionary
Algorithms (RHEA) are a viable competition to tree-based search meth-
ods, such as MCTS and they support continuous action spaces by default.

Very little work has been done in showing how to do online planning on
a learned model using evolution, which copes seamlessly with continuous
action spaces that emulate the dynamics of realistic and complex real-
time environments with a limited decision time budget. Ultimately, this
section should help clarify and compare different contemporary methods
that may be used to learn a world model and do planning. Please refer to
appendix A.1.1 for a very brief summary of model-based RL and planning
concepts required to understand the main ideas of this chapter if you have
not read section 2.3.2 in the background chapter.

42

3.1. LEARNING GENERATIVE MODELS 43

3.1 Learning Generative Models

In Learning and Querying Fast Generative Models for Reinforcement Learn-
ing (Buesing et al. 2018), the authors argue for the need of efficient and
accurate environment models in model-based RL. They suggest using gen-
erative models that learn and operate on compact state representations,
which they call state-space models. State-space models (SSMs) are de-
scribed as models that find a compact state representation st, which cap-
tures all essential aspects of the environment on an abstract level. They
assume that the next compact state st+1 can be predicted from the previ-
ous state st and action at alone, without using previous pixels or actions.

They assume the compact state st is sufficient to predict ot where ot is
the real state. As a result, latent states are sufficient to generate predic-
tions of states into some future horizon. They consider both deterministic
transition models (dSSMs) given a state-action pair at time t:

st+1 = g(st, at) (3.1)

and stochastic transition models (sSSMs):

p(st+1|st, at) (3.2)

that explicitly model uncertainty over the future next state st+1. The
latter is parameterized by introducing a latent variable zt for every time
step t whose distribution depends on st−1 and at−1, by making the state
a deterministic function of the past state, action and latent variable:

zt+1 ∼ p(zt+1|st, at)
st+1 = g(st, at, zt+1)

(3.3)

In addition to the transition function, they use an observation model (i.e,
decoder) to sample real observations:

ot ∼ P (ot|st, zt) (3.4)

Latent variables are constrained to be normal with diagonal covariances.

The state-space models (SSMs) are implemented using a Residual Net-
works (ResNets), which are ANNs that skip connections or use short-
cuts to jump over layers. This avoids vanishing gradients when training
deep convolutional neural networks, by reusing activations from a previ-
ous layer, since gradients are propagated through fewer layers, which also
speeds up learning dramatically.

The paper is based on recent work exploring models from standard recur-
rent neural networks (RNNs) to fully stochastic models with uncertainty
and is one of the first examples demonstrating it is possible to learn a
model of the world in Atari video games. However, they are limited to a
discrete action setting and do not show planning is possible on the learned
model. Further, they assume access to a pre-trained environment model
via Monte-Carlo rollouts under a rollout policy so additional work would
be to drop this assumption and jointly learn a model and agent.

44 CHAPTER 3. RELATED WORK

3.2 World Models

In World Models (Ha and Schmidhuber 2018a), the authors explore build-
ing generative neural network models of popular RL environments. They
call the model of the environment a world model, which is trained in an
unsupervised manner to learn a compressed spatial and temporal repre-
sentation of the environment. They compare this model to how ”Humans
develop a mental model of the world based on what they can perceive
with their limited senses” (Ha and Schmidhuber 2018a, p. 1). Using this
model, they demonstrate that it is possible to train a very compact and
simple policy to solve the task of driving in the car racing environment
and obtaining a high score when playing Doom in the Vizdoom environ-
ment. Thus, unlike the previous paper, they manage to show it is possible
to jointly learn a model and an agent. Besides, they show it is possible
to train the agent entirely inside the simulated environment (model) and
successfully transfer back the learned policy into the actual environment.
This seems to be one of the first studies that shows it is possible to learn
a model of the environment and then do planning. In this case, they do
state-space planning where a policy is learned from the latent state space
provided by the model. Their model is represented by a visual component,
memory component and a decision-making component.

Large neural networks are used to model the visual and memory compo-
nent, which are trained separately using Backpropagation and an Adap-
tive moment estimation (Adam) optimizer, which is a variant of stochastic
gradient descent that computes adaptive learning rates for all parame-
ters. The visual component compresses visual frames s ∈ R64·64·3 into
a latent low-dimensional representation z ∈ RNz

where Nz = 32 in car
racing and Nz = 64 in doom. The memory component makes predictions
P (zt+1|at, zt, ht) about future codes (i.e., latent states) zt+1 when given an
action at, current latent state zt and recurrent hidden state ht of histor-
ical information. The decision-making component decides which actions
to take, based on zt, ht and rewards rt from the real environment.

Figure 3.1: Agent model flow diagram (Ha and Schmidhuber 2018b)

3.2. WORLD MODELS 45

They use a Convolutional Variational Autoencoder (CONVVAE) as the
View component to compress each frame st at time t into a low dimen-
sional latent vector zt that can be used to reconstruct the original image
(figure 3.2):

Figure 3.2: VAE Flow (Ha and Schmidhuber 2018b)

They use a Mixture Density Recurrent Neural Network (MDRNN) in the
Memory (M) component to predict the future (figure 3.3):

Figure 3.3: RNN with MDN mixture of Gaussian output used to sample
prediction of next latent vector (Ha and Schmidhuber 2018b)

Figure 3.3 shows how the MDRNN is a predictive model of future latent z
vectors that the View (V) component is expected to produce. The RNN
outputs a probability density function p(z), instead of a deterministic pre-
diction of z, since many complex and realistic environments are stochastic.
For this purpose, they approximate p(z) as a mixture of Gaussians and
train the RNN to output the probability distribution of the next latent
vector zt+1 given the current and past information. In practice, the RNN
models the parameters of P (zt+1|at, zt, ht), which is used to form the dis-
tribution in an MDN as output where at is the action taken at time t and
ht is the hidden state of the RNN at time t.

46 CHAPTER 3. RELATED WORK

Arguably, it may seem excessive for the MDRNN to use a mixture of
Gaussians to model the future, since the VAE is simply a single diagonal
Gaussian distribution. However, the authors mention the discrete modes
(peaks) in a mixture density model are useful for environments with ran-
dom discrete events (e.g., a binary variable if a monster shoots a fireball).
The VAE is trained to minimize L2 (MSE) distance between the actual
frames and predicted reconstructions (reconstruction error). It also min-
imizes Kl Divergence as a measure of difference between the estimated
and true probability distribution of P (z|s), since the goal of VAEs is to
infer P (z) from P (z|s). This posterior is intractable so we estimate it
using the encoder output, such that it is as close as possible to a stan-
dard normal distribution. For the MDRNN, we maximize the likelihood of
the Gaussian Mixture Model from the MDN by minimizing the negative
log-likelihood.

The Controller (C) model is used to determine a policy by finding an
action that maximize the expected cumulative reward of the agent during
a rollout in the environment. The controller is a simple single-layer linear
model that maps zt and ht directly to action at at each time step: at =
Wc[ztht] + bc where Wc and bC are the weight matrix. The weight matrix
and bias vector maps the concatenated input vector [ztht] to the output
action at. Notice, the authors fail to mention that they do not learn the
reward function but use the rewards of the real environment to train their
controller. This can be regarded as less puritan, since they do not use a
complete model to do planning, which includes learning a reward function.

In World Models, the authors first collect 10,000 rollouts from a random
policy that encourages exploration of the real state-space. Notice, their
MDRNN and VAE use 512 hidden units and a latent size of 64 in doom
and 256 hidden units and a latent size of 32 in car racing. Secondly, they
train the VAE (V) to encode each frame into a latent vector z ∈ R32.
Thirdly, they train an MDRNN (M) to model P (zt+1|at, zt, ht). They
evolve a controller (C) that maximizes expected cumulative reward of a
rollout. This is done using a gradient-free Covariance-Matrix Adaptation
Evolution Strategy (CMA-ES) to evolve C’s weights. They use a temper-
ature parameter to control the uncertainty of the simulated environment
to avoid the agent from exploiting imperfections in it.

In summary, the authors in World Models have demonstrated planning
in latent space using a learned model. The model uses a VAE to obtain
a compressed representation. It uses an MDRNN to predict the future
to capture the spatial and temporal traits of the environment. Thus, one
may treat the model as an MDP that does not rely on the Markov prop-
erty, since the current recurrent hidden state contains all past relevant
information needed along with the current latent state to predict future
latent states. The output of the MDRNN is an MDN to model the tran-
sition function as a stochastic mixture of Gaussians, which enables us
to represent a partially observable environment and its dynamics with a
stochastic transition function.

3.2. WORLD MODELS 47

The paper shows it is possible to learn a model of the environment and
use it, instead of the actual environment to learn a policy. Interestingly,
they can model the future and come up with hypothetical scenarios us-
ing the MDRNN. Thus, the Controller can also train inside the simulated
environment. Further, they show the Controller trained in the simulated
environment (model) of doom is successfully able to transfer back its pol-
icy into the actual environment. According to the authors, their method
is the first reported solution to solve the task in car racing and doom,
by using a world model to take in raw pixel images and directly learn a
spatial-temporal representation.

In our view, we have identified the following issues and rooms for im-
provement in the paper. Firstly, it may be fine for simple tasks to train
the model on a dataset collected from a random policy, but we need an
iterative training approach for complex environments, as they suggest.
Namely, the agent should be able to explore its world and collect new
experiences that can be used to retrain and improve the world model over
time. A simple procedure is to initialize the model and Controller with
random parameters, then do N rollouts (game episodes) where the agent
learns and stores the generated actions, observations and rewards. These
may then be used to train the MDRNN to model the future better and
train the Controller to maximize expected rewards inside the model. This
cycle can be repeated until the task is done.

Secondly, if the MDRNN does a poor job at predicting the future, that
means the agent has encountered parts of the world it is unfamiliar with.
For this purpose, one could look into ways of encouraging exploration of
unfamiliar parts of the world, which could serve as new data collected to
improve the world model. According to the paper, one may flip the sign
of the MDRNN loss function to encourage exploration, since this would
cause previously bad future predictions to be explored more, leading the
agent into new territory.

Further, they use the actual reward function of the real environment to
train their Controller instead of a model. In addition, the author train
each component separately, although end-to-end training of the compo-
nents might lead to a representation more relevant to planning. For ex-
ample, the VAE may learn to encode information irrelevant to the task
at hand because it is not trained in combination with the MDRNN and
Controller. However, the authors mention the benefit is that the VAE can
then be reused for different tasks, unlike a model optimized for one task
only in the environment.

Finally, the paper only shows how to do planning using a learned approach
by combining the benefits of model-based and model-free approaches (learn-
ing a policy in a model). However, they do not show how to do online
plan-space planning through search (”thinking”). Thus, one may look into
iterative end-to-end training, exploration methods, reward modeling and
online planning.

48 CHAPTER 3. RELATED WORK

3.3 Deep Neuroevolution of World Models

In Deep Neuroevolution of Recurrent and Discrete World Models (Risi
and Stanley 2019), the authors address the issue of world models that
rely on multiple different neural components responsible for visual pro-
cessing, memory and decision-making with inspiration from the World
Models paper (Ha and Schmidhuber 2018a). They critique the need to
train the components separately with different specialized training meth-
ods. Thus, they demonstrate that models with the same parts can be
trained efficiently end-to-end through a genetic algorithm (GA). Interest-
ingly, the paper shows that the evolved visual and memory system obtains
an effective representation, similar to the system trained through gradient
descent in the Ha and Schmidhuber (2018a) paper. In general, gradient-
descent methods rely on a differentiable loss function, which means it
must be continuous (i.e., have no breaks) and smooth (i.e., derivatives are
defined).

However, the authors use evolution as their optimization technique, which
also works well with nonsmooth optimization problems involving discrete
variables (e.g., minimizing f(x) subject to x ∈ Rn) so their approach
open up opportunities for classical planning in latent space. The ap-
proach is commonly referred to as Neuroevolution, which is using evolu-
tionary algorithms to train the parameters and topologies (i.e, structures)
of ANNs. Neuroevolution is called Deep Neuroevolution when done on
DNNs. The paper mainly focuses on exploring whether a GA can opti-
mize a multi-component system end-to-end without the need for separate
training phases. Moreover, they argue most approaches to learning dy-
namical systems mainly focus on gradient descent methods that work on
RNNs, which is a popular choice of model used to capture a spatial and
temporal representation of a dynamical environment. In their approach,
they evolve DNNs with a simple genetic algorithm that adds Gaussian
noise to the network’s parameter vectors in the mutation operator. Fur-
ther, they observe the importance of having a memory component to
predict potential futures that allow the agent to take sharp corners in the
car racing environment.

They also investigate whether their evolved memory model is able to do
the same by using t-SNE dimensionality reduction to gain insight into
the inner workings of the MDRNN latent state predictions. The authors
show that the recurrent network changes drastically in situations where
the agent needs to react quickly to changes in the environment (e.g. sharp
turns). Further, the authors argue that the benefit of an end-to-end train-
ing approach might be more clear in complicated tasks for which data col-
lected with random rollouts is insufficient. Finally, they have not looked
into whether the agent can train and improve in the simulated environ-
ment like in the original world model paper. Nonetheless, they also use
the rewards of the actual environment to train their controller and do
not show whether it is possible to do online planning on a fully learned
environment model.

3.4. LEARNING LATENTDYNAMICS FOR PLANNING (PLANET)49

3.4 Learning Latent Dynamics for Planning

from Pixels (PlaNet)

In Learning Latent Dynamics for Planning from Pixels (Ha, Hafner, et al.
2019), the authors propose a Deep Planning Network (PlaNet), which is
a purely model-based agent that learns the environment dynamics from
frames and picks continuous actions through fast online planning in latent
space. The authors argue that learning latent dynamics models for plan-
ning are subject to problems such as model inaccuracies, accumulating
errors of multi-step predictions, failure to capture multiple futures and
overconfident predictions outside training. For this purpose, they rely
on a dynamics model that represents the world as a compact sequence
of hidden states that can accurately predict the rewards multiple time
steps ahead. They do this by using a latent dynamics model with both
deterministic and stochastic transition components.

This paper demonstrates a method that solves the task of planning en-
tirely inside latent spaces. This is achieved by using a recurrent state-
space model with both deterministic and stochastic components. Fur-
thermore, latent overshooting is used, which trains multi-step predictions
in latent space to improve the accuracy of long term future predictions
used for planning. This minimizes compounding prediction errors that
occur when modeling one-step lookahead. Besides, they model the en-
vironment dynamics from experience by doing iterative training of the
dynamics model.

Moreover, a model-predictive control (MPC) is used to allow the agent
to adapt its plan based on new observations. MPC replan at each step,
similar to the rolling horizon planning approach. However, given latent
states, it outputs a probabilistic distribution of actions instead of deter-
ministic actions. Further, they do not use any policy or value network in
contrast to model-free RL or previous model-based RL methods that pre-
dominantly learn a policy in the simulated environment. When collecting
episodes for training data, a small Gaussian exploration noise is added to
the action, to encourage exploration of the state-space environment and
capture the various dynamics of the environment.

The cross entropy (CE) used is a planning algorithm to search for the
best action sequence under the model. CE is a gradient-free, adaptive,
randomized algorithm used for policy search optimization to infer a dis-
tribution over action sequences that maximize the objective. The main
idea is that the probability of locating a somewhat optimal solution to the
action-policy distribution with random search is a rare-event probability.
Thus, the CE method is used to gradually change the action distribution
of random search so that the rare-event is more likely to occur. It uses
cross-entropy or Kullback-Leibler divergence as a measure of closeness be-
tween two distributions to minimize the difference between the initially
random action-policy distribution and the optimal action-policy distribu-
tion.

50 CHAPTER 3. RELATED WORK

The method estimates a sequence of sampling distributions that converge
to a distribution with probability densities concentrated in near-optimal
solution regions. The CE method employs an iterative procedure where
each iteration switches between generating a random action-policy tra-
jectory and updating the action distribution parameters. The switching
is based on the reward obtained by following the action-policy samples
for a particular state in the learned model. Ultimately, this helps pro-
duce a ”better” trajectory sample in the next iteration. Before starting
the search, they initialize a time-dependent diagonal Gaussian belief over
optimal action sequences:

at:t+H ∼ N(µt:t+H , σ
2
t:t+HI), (3.5)

where t is the current time step of the agent and H is the planning horizon.
Starting from zero mean and unit varianceN(0, 1), they repeatedly sample
J candidate action sequences, evaluate them under the model and re-fit
the belief to the top K action sequences.

After i iterations, the planner returns the mean of the belief for the current
time step, µt. Notice, the belief over action sequences resets from zero
mean and unit variance again to avoid a local optima after receiving the
next observation. A candidate action sequence is evaluated under the
learned model by sampling a state trajectory starting from the current
state belief and summing the mean rewards predicted along the sequence.
They only evaluate a single trajectory per action sequence to focus the
time budget on evaluating a larger ”population” of different sequences.
They use a reward function modeled as a function of the latent state
without generating images to speed up the evaluation of large batches of
action sequences. The latent dynamics model is a recurrent state-space
model (RSSM) that can predict forward purely in latent space.

The Recurrent State-Space Model (RSSM) combines state-space models
(SSMs) to model sequences and dynamical systems with RNNs to resolve
the problem of capturing nonlinear, non-Markovian long-term dependen-
cies (state transition depends on all past latents z<t). The PlaNet pa-
per highlights two findings to guide future designs of dynamic models:
stochastic and deterministic paths in the transition model are crucial for
successful planning. The purely stochastic transitions make it difficult for
the transition model to reliably remember information in multiple time
steps despite its generality. Thus, a deterministic sequence of hidden vec-
tors {ht}Tt=1 are used to allow the model to access not just the last state
but all previous states deterministically.

3.4. LEARNING LATENTDYNAMICS FOR PLANNING (PLANET)51

The recurrent state-space model (RSSM) is given by four components:

ht = fRNN(ht−1, zt−1, at−1) (deterministic state model: RNN)

zt ∼ p(zt|ht) (stochastic state model: SSM)

st ∼ p(st|ht, zt) (observation state model)

rt ∼ p(rt|ht, zt) (reward model)

(3.6)

The deterministic state model is implemented as a recurrent neural net-
work (RNN). This model splits the state into a stochastic part zt (denoted
st in original paper figure 3.4) and a deterministic part ht. Both depend on
the stochastic and deterministic parts at the previous time step through
the RNN. In the RSSM, transitions depend on all past latents z<t so it is
non-Markovian (i.e., given the present, the future is not independent of
the past).

Figure 3.4: Latent Dynamics Model Design (Ha, Hafner, et al. 2019)

PlaNet use a recurrent state-space model (latent dynamics model) with
both deterministic and stochastic components to predict a variety of pos-
sible futures as needed for robust planning, while remembering informa-
tion over many time steps. This is combined with latent overshooting,
which is generalizing the training objective for latent dynamics models
to train multi-step predictions, by enforcing consistency between one-step
and multi-step predictions in latent space. This helps improve long-term
predictions required to plan with long horizons in latent space. Similarly,
they only predict future rewards and not states to evaluate an action
sequence, which speeds up planning.

Compared to preceding work on world models, PlaNet works without a
policy network, since it chooses actions purely by planning so it benefits
from model improvements on the spot. They evaluated it on continu-
ous control tasks where the agent is only given image observations and
rewards. By doing planning with a learned model, PlaNet was able to
outperform model-free methods like DeepMind’s Asynchronous Advantage
Actor-Critic (AC3) algorithm released in 2016. For context, the basic idea
behind an actor-critic agent is to combine policy and value based function
methods using function approximators where an actor produces the best
action for a given state (policy) and the critic receives the environment
(state) and action by the actor as input and outputs the action value
(Q-value) to create an actor-critic synergy.

52 CHAPTER 3. RELATED WORK

3.5 Planning with a Learned Model (MuZero)

In Mastering Atari, Go, Chess and Shogi by Planning with a Learned
Model (Schrittwieser et al. 2020), the DeepMind team proposes the MuZero
algorithm, which combines tree-based search (MCTS) with a learned model
to do planning. They show MuZero can achieve superhuman performance
in complex board games (Go, Chess and Shogi), as well as in visually
complex Atari video games. MuZero learns a model iteratively that fo-
cuses on predicting the quantities most directly relevant to planning: the
reward, the action-selection policy and the value function. They explain
how planning algorithms based on lookahead rely on knowledge about the
environment dynamics, which might not be available in real world do-
mains like robotics. For this purpose, they suggest using Model-based RL
to learn a model of the environment dynamics and then plan with respect
to the learned model. They also mention that most successful methods
today are based on model-free RL that estimates the optimal policy and
value function directly from interactions with the environment.

MuZero is an extension of their previous AlphaGo, AlphaGo Zero and
AlphaZero search algorithms that also do lookahead planning using MCTS
but assume access to a perfect world model. In short, AlphaGo uses
MCTS with multiple deep convolutional policy networks that have access
to human expert moves. They then show that DNNs can play Go by
predicting a policy (mapping from state to action) and value estimate
(probability of winning in a given state) that are used by MCTS to select
promising actions. AlphaGo Zero is an extension that does not use data
from human games but plays against itself (i.e., self-play). It combines
the value and policy network into a single Residual Network (ResNet)
and uses the action distribution produced by MCTS lookaheads as target
to train the policy network in a supervised manner, instead of using the
policy network’s predictions of the action distribution.

AlphaZero is an extension to AlphaGo Zero that can also play Chess and
Shogi. MuZero is the current state-of-the-art algorithm from DeepMind
that relaxes the assumption of having access to the environment dynamics
and supports single-agent domains with discounted rewards, unlike its
predecessors that work in two-player games with undiscounted terminal
rewards of ±1. Chess, Shogi and Go are all examples of games with
a perfect simulator, since the dynamics are just the rules of the game.
However, MuZero demonstrates it is possible to learn a model in Atari
games from raw pixels and use that for successful planning using MCTS
and a policy network. Figure 3.5 shows the MuZero pipeline.

Diagram A shows how MuZero uses its model to plan. The model consists
of three connected components for representation, dynamics and predic-
tion. First, observations (e.g. Go board or Atari screen) are passed into
a representation function h : o → s to obtain the initial hidden state
s, which is similar to the latent state representation z from V : o → z
in World Models. The hidden states are used by a prediction function
f : sk → pk, vk to predict the policy pk and value function vk.

3.5. PLANNING WITH A LEARNED MODEL (MUZERO) 53

In World Models, there is no value function, since the authors make world
models of video games that rely on a dense reward signal only. This is un-
like MuZero that plays on board games where a value function is needed
to determine the value of a particular state of the game, since the agent
only receives a reward at the end of the game when it has won or lost,
making the reward signal very sparse. Further, the policy is a stochastic
distribution over actions π = P (a|s) in MuZero, whereas it is just a de-
terministic function π(s) = a in World Models. Finally, a deterministic
dynamics function is used to produce an immediate reward rk and a new
hidden state sk given a previous hidden state sk−1 and candidate action
ak. This is different to World Models that uses a stochastic dynamics
function: z, a → p(z′|z, a), r, to produce a reward and next latent state
sampled from a mixture Gaussian distribution over latent states.

Figure 3.5: Planning, acting and training with a learned model (Schrit-
twieser et al. 2020)

Diagram B shows how MuZero acts in the environment. Monte-Carlo Tree
Search (MCTS) is performed at each timestep t to do lookahead search
of promising actions. The basic algorithm involves iteratively building a
search tree until some budget is reached, upon which the best-performing
root action is returned. Each node in the search tree represents a state of
the game and edges to child nodes represent actions leading to subsequent
states. An action at+1 is sampled from the search policy πt = P (at+1|st),
which is proportional to the visit count for each action from the root
node. The environment uses the action at+1 and the current observation
ot to generate a new observation ot+1 and reward ut+1. At the end of the
episode, the trajectory experience generated by MCTS planning is stored
into a memory replay buffer. Refer to A.1.3 for the MCTS algorithm.

Diagram C shows how MuZero trains its model. Trajectories (rollouts
of rewards, actions and observations) generated by MCTS planning are
sampled randomly from the memory replay buffer. The representation
function h is used to convert the past observations o1, . . . , ot from the
trajectory into hidden states s1, . . . , st latent space. At each step k, the
model is unrolled recurrently for K steps by taking the hidden state sk−1

and real action at+k to predict the next hidden state sk and reward uk.

54 CHAPTER 3. RELATED WORK

The parameters of the three components (representation, dynamics, pre-
diction functions) are jointly trained, end-to-end by backpropagation-
through-time to predict three quantities: the policy pk ≈ πt+k, the value
function vk ≈ zt+k and reward rt+k ≈ ut+k where zt+k is a sample return
(total expected reward), which is either the final reward (board game) or
n-step return (Atari).

The loss function is composed of a reward, value, policy and regularization
term. The reward targets are the observed rewards rkt that are compared
to the predicted rewards ut+k from the g dynamics function. The improved
policy targets are generated by an MCTS search and used by the policy
network that tries to minimize the error between the predicted policy pkt
and the search policy πt+k. The improved value targets are generated by
playing the game or MDP like in AlphaZero. Unlike AlphaZero, MuZero
supports long episodes with discounting and intermediate rewards. This
is done by bootstrapping, which is estimating quantities based on other
estimated quantities. In this case, the return zt (total expected discounted
reward) is estimated using the predicted rewards n steps into the future
from the search value:

zt = ut+1 + γut+2 + . . .+ γn−1ut+n (3.7)

Thus, the value function objective is to minimize the error between the
predicted value v(t + k) and the value target zt+k. An L2 regularization
term (i.e., Ridge Regression) is added to reduce overfitting by keeping
weights and biases small:

lt(θ) =
K∑
k=0

lr(ut+k, r
k
t) + lv(zt+k, v

k
t) + lp(πt+k, p

k
t) + c||θ||2 (3.8)

,

where lr, lv and lp are loss functions for the reward, value and policy and
K denotes the horizon of future trajectories starting from time t.

In model-based RL, you can use simulations of the dynamics offline to
improve the current iterations of the control policy. This is similar to how
MuZero trains a policy network to learn offline from game trajectories
generated by planning online with MCTS. MuZero cleverly uses MCTS
to update the policy and value targets used to train the policy and value
network. This is an example of imitation learning, which is the process of
training a policy to mimic the actions of another policy.

Muzero trains the policy network to reflect the distribution of actions
selected during a state in Monte Carlo Tree Search. The policy and value
network is then used to influence action selection in future tree searches
as done in AlphaZero and MuZero. As a result, planning is improved in
large action spaces because the agent focuses on more promising choices
based on previous experiences. Deep Neural Networks (DNN) are used to
create trained policies, which can predict the actions of other agents and
aid an individual agent’s own search during planning.

3.5. PLANNING WITH A LEARNED MODEL (MUZERO) 55

The approach in MuZero is very similar to that of World Models ex-
cept World Models do not employ an iterative end-to-end training pro-
cedure like in MuZero and in Deep Neuroevolution. Instead, the model
components (representation view V and dynamics model M) are trained
separately using gradient descent method and backpropagation. Finally,
they train the controller with evolution to produce a deterministic action
given a latent state, whereas MuZero trains a policy network to predict a
distribution over actions given latent states.

Also, MuZero uses a value network, since they use the algorithm for board
games, which World Models does not need to do for video games. In World
Models they use a stochastic transition model, instead of a deterministic
one like in MuZero. Interestingly, MuZero also seems to use multi-step
predictions as indicated by the horizon K in the loss function. Yet, World
Models does single-step predictions, meaning the latent dynamics model
is only evaluated by its ability to predict the next latent state, given the
current latent state zt+1 ∼ p(zt+1|zt, ht, at) and not trained to minimize
compounding errors as a result of consecutive future predictions. Hence,
the World Models dynamics model is not evaluated by its ability to predict
multiple steps ahead and relies on the assumption that the near future
can be predicted from the immediate past.

On the other hand, the authors in MuZero argue the immediate future
st+1 may be accurately predicted from past observations st−k:t, which are
summarized in World Models by the recurrent hidden state of the MD-
RNN dynamics model. However, World Models fails to address the issue
of compounding prediction errors when doing single-step predictions of
the future, which may be improved by overshooting (predicting multiple
steps ahead) to predict the consecutive steps into the future. Finally, the
authors in MuZero paper mention extending their deterministic dynamics
function to stochastic transitions as future work.

In our opinion, the main problem in MuZero is the immense amount
of training data and hardware resources required. Namely, they use 20
billion frames in Atari and train 12 hours using 8 TPUS. In comparison,
World Models only trains on 10,000 random rollouts that each contain
500 frames, which corresponds to 5 million frames that can be trained
on a single Nvidia 1080 GTX in roughly the same time, although it only
has a normalized 30% GPU score of a single TPU, according to a Deep
Learning Benchmark in PyTorch (see A.2).

56 CHAPTER 3. RELATED WORK

3.6 Dream to Control (Dreamer)

In Dream to Control: Learning Behaviors By Latent Imagination (Hafner
et al. 2020), the authors show the possibility to learn long-horizon be-
haviors by latent imagination using a learned actor-critic approach. They
argue it is feasible to learn world models from high-dimensional sensory
inputs through deep learning but there are many potential ways to derive
behaviors (policies) from them. Behaviors are often derived from dynam-
ics models by either maximizing imagined rewards with a nonparametric
policy (e.g., World Models) or by online planning (e.g., PlaNet).

Their main critique is that many world models are limited in how far they
can accurately predict, rendering many model-based agents shortsighted.
The paper is an extension to Learning Latent Dynamics for Planning from
Pixels that proves the possibility of learning accurate world models from
images. They use the PlaNet world model and focus on the behavioral
aspect of planning that have held back model-based RL. For this purpose,
they present Dreamer, a RL agent that solves long-horizon tasks from
images purely by latent imagination. Dreamer learns a world model, given
a sequence of observations, actions and rewards from the agent’s past
experience. It leverages the PlaNet world model to predict ahead using
compact model states instead of images, enabling the model to predict
many latent future trajectories on a single GPU. The three processes
of Dreamer that are commonly used across model-based methods are:
learning the world model (PlaNet), learning behaviors from predictions
(i.e., policy) made by the world model and executing the learned behaviors
in the environment to collect new experience. To learn behaviors, Dreamer
uses a learned value network that takes into account rewards beyond the
planning horizon and an actor (policy) network to compute actions. These
three processes are repeated in parallel until the agent has achieved its
goals. This is similar to the iterative training approach advocated by some
of the other methods described previously.

Dreamer overcomes the problem of shortsighted planning agents by learn-
ing a value network and actor-network via backpropagation through pre-
dictions of its world model. The actor network learns to predict optimal
actions by propagating gradients of rewards backward through predicted
state sequences, which is not possible in model-free approaches. Thus,
the agent knows how small changes to its actions affect, which rewards
are predicted in the future and will refine the actor-network accordingly
to maximize the reward. For rewards beyond the prediction horizon, the
value network estimates the sum of future rewards for each model state.
The rewards and values are backpropagated to refine the actor-network
and gradually improve selected actions. Thus, the agent backpropagates
value estimates through trajectories imagined in latent space of a learned
model. In summary, Dreamer learns policy and value models in its latent
space. The value model optimizes Bellman consistency of imagined tra-
jectories (latent returns). The action model maximizes value estimates by
propagating gradients back through imagined trajectories.

3.6. DREAM TO CONTROL (DREAMER) 57

When interacting with the real environment, it executes the action model
learned in the simulated environment. Thus, their planning approach is
similar to World Models where a policy is learned inside the model and
successfully transferred back to the real environment. However, Dreamer
uses a multi-step prediction objective and a value network to model the
future beyond the horizon. The latent dynamics world model is repre-
sented by three components shown in equations 3.9. The representation
model encodes observations ot and actions at−1 into a latent state st, us-
ing the convolutional VAE (ConvVAE) encoder and decoder from World
Models to create a continuous vector-valued latent model state st with
Markovian transitions. The transition model predicts future model states
without seeing the corresponding observations that cause them. This is
the RSSM latent dynamics model used in PlaNet that has a stochastic
and deterministic component and use multi-step prediction. The reward
model predicts the rewards given the latent model states and is a three-
layer dense neural network.

Representation model : p(st|ot, at−1)

Transition model : q(st+1|st, at)
Reward model : q(rt|st)

(3.9)

The distribution p is used to generate samples in the real environment
and q for their approximations that enable latent imagination. The model
mimics a non-linear Kalman filter, latent state-space model or HMM with
real-valued states. However, it is conditioned on stochastic actions and
rewards, allowing the agent to imagine outcomes of potential action se-
quences without executing them in the environment. The latent dynamics
define an MDP that is fully observable, since the compact model states
(st) are Markovian where future latent states are independent of past la-
tent states. Imagined trajectories start in the true latent model state st
drawn from the agent’s past experience.

Action model : at ∼ qθ(at|st)

Value model : vt(st) ≈ Eq(·|st)(
t+H∑
t=0

γtrt)
(3.10)

The simulated trajectories follow predictions from the transition model
st ∼ q(st|st−1, at−1), reward model rt ∼ q(rt|st) and a policy at ∼ q(at|st).
The aim is to maximize expected imagined rewards Eq(

∑∞
t=0 γ

trt) with
respect to the policy. The actor-critic approach learns an action model
that implements the policy and aims to predict actions that solve the
imagined environment. The value model estimates the expected imagined
rewards that the action model achieves from each state st. They are
trained together as in policy iteration: the action model aims to maximize
an estimate of the state value, while the value model aims to match an
estimate of the value that changes as the action model changes. Both are
parameterized as dense neural networks.

58 CHAPTER 3. RELATED WORK

3.7 Summary

In Learning Latent Dynamics for Planning from Pixels, the authors have
shown it is possible to do online planning in latent space using an adaptive
random algorithm on a recurrent state-space model (SSM) with a deter-
ministic and stochastic component and a multi-step prediction objective.
In World Models, the authors showed it is possible to learn a stochas-
tic latent MDRNN as a model of the world with a single-step objective
and train a learned policy with evolution inside that same model. In
Mastering Atari, Go, Chess and Shogi by Planning with a Learned Model
(MuZero), the authors show how to do planning with a learned model in
board and video games using a combination of tree-based search (MCTS)
and a learned policy network to do imitation learning.

In our opinion, Learning Latent Dynamics for Planning from Pixels (PlaNet)
is the approach that is most similar to that in our thesis (i.e., online plan-
ning on a learned model). However, it uses a fairly complicated dynamics
model and planning algorithm. In Dream to Control: Learning Behaviors
By Latent Imagination, the authors use the PlaNet world model but no
longer do online planning. Instead, their Dreamer agent uses an actor-
critic approach to learn behaviors that consider rewards beyond the hori-
zon, by learning an action model and value model in the latent space
of the world model. Thus, their approach is similar to World Models
where they plan on a learned model by training a policy inside the sim-
ulated environment with backpropagation and gradient descent, instead
of evolution. The novel part is using a value network to estimate rewards
beyond a finite imagination horizon. Also, World Models does not show
how to do planning on a fully learned model, since the reward signal is
not learned in their model. Finally, MuZero relies on extensive training
data and access to unrealistic GPU resources, which may not be feasible
in practice.

Altogether, many of the approaches seem to agree on an iterative, end-to-
end training approach of the model. The components are directly relevant
to planning (representation, dynamics, reward) and the trajectories are
used to improve the world model iteratively. This is based on a multi-step
prediction objective to ensure the model can predict multiple steps into
the future. These approaches all demonstrate the possibility to plan on a
learned model, yet very few show it with online planning. Further, none
of the methods show planning on a learned model using an evolutionary
online planning algorithm that may cope with continuous action spaces.
Finally, most successful methods rely on large training data and GPU
resources.

For this purpose, we will strive to show that it is possible to do online
planning with a simple evolutionary algorithm on a learned model of the
world trained using a reasonable amount of data in the visual domain of
the 2D car racing environment.

Chapter 4

Approach

This section will explain our approach of implementing AI planning agents
for car racing using the theory from the background chapter and the meth-
ods in the related work chapter. The chapter will describe the main meth-
ods used by the agents and include descriptions of the implementation and
any enhancements made. The chapter will not reexplain the definitions,
concepts and theory behind our approach (see background and related
work for this). Instead, we focus on how to solve the continuous control
task of learning how to drive whole random tracks from pixels by doing
planning on a learned model of the car racing environment.

59

60 CHAPTER 4. APPROACH

4.1 Planning: Online Policy Search (RHEA)

in Latent Space (VAE) with Model (MDRNN)

We use model-based Reinforcement Learning to solve the continuous con-
trol task in car racing. This is done by online evolutionary planning on
a learned model of the environment. Our solution is based on the model
used in World Models (Ha and Schmidhuber 2018a) and the planning
agent presented in Rolling Horizon Evolution versus Tree Search for Nav-
igation in Single-Player Real-Time Games (Perez, Simon M. Lucas, et al.
2013). We use a latent representation of states in the environment and a
learned model of the environment, which consists of an estimated transi-
tion dynamics and reward function that operates on the latent representa-
tion. The latent representation and model (dynamics, reward) constitute
our ”world model” and is used to obtain an efficient representation and
a model of the environment. The world model enables us to do planning,
which is using the environment model to find or improve a policy. In
our case, we wish to find the best course of action given a state in latent
space. Ultimately, our goal is to find such mapping where we can transfer
our policy back to the real environment successfully. Namely, an optimal
”plan” in latent space should also be optimal in the real environment.
Today, most popular deep model-based RL methods do this by learning
a model and doing (offline) state-space planning on it, which is learning
an optimal policy from the latent state space. This is typically done us-
ing a policy network trained with gradient-based backpropagation (e.g.
MuZero) or gradient-free evolution (e.g. World Models). Unlike model-
free RL that learns a policy directly from real experiences, the policy is
now learned from a model in latent space with compressed and efficient
simulated experiences. We use the same latent space and model but, in-
stead of doing state-space planning, we do plan-space (online) planning,
which is searching through a subspace of plans to find an optimal pol-
icy. We use RHEA to do online planning (like PlaNet) where an agent
evolves a plan (i.e., sequence of actions) in the imaginary model for some
time, acts on the real world by performing the first action of its plan and
then evolves a new plan repeatedly in a simulation until the game is over.
Figure 4.1 shows the entire reproduction flow of our work. We generate
20,000 rollouts with a random and good policy. We then train the VAE
to obtain a latent representation, which is used to train a MDRNN dy-
namics model. The world model (VAE, MDRNN) is tested to verify the
VAE reconstructions and that the MDRNN respects the rank order of the
rewards in the real environment. The best world model is picked to do
NTBEA parameter tuning of our RHEA planning agent. Finally, the best
world model is used to benchmark the tuned RHEA agent by planning
in latent space and transferring its policy back to the real environment.
It has already been shown in related work that it is possible to learn a
dynamics model and efficiently plan in its latent space (PlaNet). Our
research is novel, since it shows how to do efficient online planning using
a Rolling Horizon Evolutionary Algorithm (RHEA) for policy search with
a learned dynamics model (MDRNN) in latent space (VAE).

4.1. EVOLUTIONARY PLANNING IN LATENT SPACE 61

Figure 4.1: Approach: Data Generation, VAE Compression, MDRNN
Dynamics, World Model Tests, NTBEA Parameter Tuning, RHEA Policy

62 CHAPTER 4. APPROACH

4.2 System Architecture

This section briefly presents the technology stack system architecture.

Technologies

The final system is implemented in Python 3.7, which is an interpreted
and high-level programming language widely used for machine learning
purposes. The machine learning operations in the system are supported
by PyTorch 1.5, an open-source machine learning library developed by
Facebook. Alternatively, one may use Tensorflow 2 to implement our
models. PyTorch and Tensorflow 2 are both Pythonic, which means they
both follow the syntax and conventions in Python. Both use dynamic
computation graphs that handle the model computations such that we
only need to focus on writing the models, defining loss functions, selecting
optimization procedures and writing the train-test loop. PyTorch was
chosen, since it is the defacto ML library used in the research community
and because our implementation is based on an existing implementation
in PyTorch (Tallec, Blier, and Kalainathan 2018). To log the training of
the VAE and MDRNN, we use TensorBoard, which is a library that that
helps visualize and inspect the loss during experimentation. NumPy is
used to support operations on large, multi-dimensional arrays of data and
Matplotlib is used for general visualization purposes such as plotting
planning trajectories and VAE reconstructions. Finally, git is used to
version control the code base and github is the primary platform for
hosting the thesis repository.

System Components

To ensure that the system is modular, maintainable and easy to under-
stand, it is based on object-oriented programming design principles where
the system components are represented by separate objects.

Each component is encapsulated and designed with the single-responsibility
principle in mind, such that it only exposes the interface and is responsible
for a single part of the system. This allowed us to quickly identify issues,
implement extensions and work on different components simultaneously.

The final system architecture and its components are illustrated in figure
4.2 where the primary components are:

• Models: VAE and MDRNN

• VAE/MDRNN-Trainers: responsible for training the models

• DataHandler: generate rollouts from good or random policy

• RHEA / RMHC: implementation of the planning algorithms

• EvolutionHandler: delegate evolution operations for RHEA and
RMHC

4.2. SYSTEM ARCHITECTURE 63

• Simulated Environment: act as an interface for the world model
to enable efficient simulation-based search

• Environment Wrapper: custom interface for the open gym envi-
ronment, which allowed us to decouple from the library

• Testers: planning tester benchmarks and tests the agents, while
Model Tester inspects MDRNN reward predictions and VAE recon-
structions

• Parameter Tuner: NTBEA Wrapper acts as an interface to the
NTBEA algorithm based on (Bamford 2019)

Figure 4.2: System Component Dependencies

64 CHAPTER 4. APPROACH

Centralized Hyperparameters

Due to the large number of components in the system, one may quickly
lose overview of all adjustable hyperparameters. To avoid this, a config-
uration file is used to centralize all hyperparameters used in the system.
The hyperparameters are structured with JSON, an open standard file for-
mat that stores data based on key-value pairs (JSON objects) and array
types (JSON lists). The hyperparameters of each component are cate-
gorized within their JSON objects and are dynamically loaded when the
system is executed. Figure 4.3 shows a small sample of how the hyperpa-
rameters are structured. Please refer to the config.json file in the source
code to see all hyperparameters and how they are configured.

Figure 4.3: Shortened example of how hyperparameters are centralized
and stored in a JSON file

4.3 Data Generation

The MDRNN and VAE are trained through supervised learning, which
relies on access to a representative dataset of environment experiences for
training and testing the models. We have implemented a Data Handler
component that is responsible for the data generation. We refer to a
sample as a rollout of experiences that represents a single game. A full
dataset consists of n = 10000 rollouts where each rollout has a sequence
length of j = 1000. A rollout consists of a sequence of j experiences
where each experience xi is represented by an ordered tuple (state, action,
reward, terminal) or as xi = {(si, ai, ri, di), j ∈ {1, . . . , j} where the state
represents the frame generated after applying an action.

With the vanilla implementation, the rollouts are initialized by placing
the car on random segments of the track (except on grass) to avoid the
same starting segment of the track. We use a random policy on the
environment while recording states, rewards, actions and terminals until
the sequence length is satisfied or the game has reached a terminal state as
illustrated in algorithm 4. Moreover, since the rollouts are independent we
also parallelize the whole procedure to speed up the data generation. The
final implementation of the data handler can be found the datahandler.py
file in package utility.

4.3. DATA GENERATION 65

Algorithm 4: Data generation procedure

Input : maxRoll: number of rollouts to generate
maxRollSize: rollout length

Output: generated rollouts
1 rollouts← {}
2 environment← car racing game
3 policy ← random or good policy
4 i = 0
5 while i < maxRoll do
6 sequence← {}
7 state← environment.reset()
8 j ← 0
9 while j < maxRollSize do

10 action← policy(state)
11 state, reward, done← environment.step(action)
12 sequence.add(state, action, reward, done)
13 j ← j + 1

14 end
15 rollouts.add(sequence)
16 i← i+ 1

17 end
18 return rollouts

Good Policy and Random Policy

The policy used to generate rollouts may have a significant influence on
how the VAE and MDRNN behave once trained. The VAE needs a dataset
that contains a diverse set of frames such that it can encode different
states (i.e., different road shapes) into latent states with minimal loss
of information. This is necessary to ensure the MDRNN continuously
receives well-represented latent encodings of real states. Likewise, the
MDRNN needs a diverse set of rollout sequences so that it can capture
the dynamics of the environment (i.e. reward signal mapping between
actions and states).

To experiment with different policies, a good policy and a random policy
has been implemented. The good policy uses the controller agent from
the World Models paper (Ha and Schmidhuber 2018a) to generate rollout
sequences that exhibit good driving behavior, which we use in our exper-
iments to see how sequences with a good exploration of the environment
state space may affect the performance of the planning agents.

The random policy is sampled as a Brownian sampling motion where
a steer, gas and brake component in the action vector is sampled as
at+1 = at +

√
dt ·N(0, 1). For each action component (steer, gas, brake),

we generate a delta value that increases or decreases the previous action
component.

66 CHAPTER 4. APPROACH

The delta value is sampled from a standard normal distribution and mul-
tiplied with a dt-factor that controls how much influence the delta value
has on the next action component. A higher dt-factor increases the delta
value’s influence, while a smaller dt-factor decreases the delta value’s in-
fluence.

Arguably, one might simply replace the whole action with a new random
action, but this may introduce large fluctuations in actions between time
step and result in very inconsistent driving sequences. For instance, if the
car is alternating a lot between steering left and right (”jaggy driving”)
while driving on a straight road, the car might still collect tiles to get
positive rewards. However, if the rollout sequences mainly demonstrate
”jaggy driving”, feeding these to the MDRNN during training may force
the MDRNN to associate rewards with jaggy driving. Thus, when the
agent plans on a straight road, it may produce strong positive reward
signals during ”jaggy driving”, instead of driving somewhat straight due
to an inductive sampling bias where certain driving behavior is overrep-
resented in the rollouts.

Instead, a Brownian motion is used for random rollout sampling, since
it uses controlled delta adjustments on previous actions to produce new
action points with similar proximity to each other, thus reducing large
action fluctuations between time steps. This may potentially help the
MDRNN to capture dynamics associated with well-behaved driving and
help encourage sufficient exploration during driving, whereas a uniformly
random policy will often alternate between gassing and braking and re-
main stuck.

Corner Detection

It is evident that the rollout sequences are dominated by an inductive
bias towards the presence of straight roads and left turns, since the tracks
mostly consist of these segments. This may introduce imbalanced data
where rare track segments (e.g., right corners, s-corners and other complex
parts) might be underrepresented and not captured by the model.

For this purpose, we implemented a component that enables the genera-
tion of rollouts, which only contain sequences of corners. The data handler
searches trough the track for corners by manually placing the car on dif-
ferent track segments until it detects a corner based on color codes. When
a corner is detected on a frame, the car is deployed with a given policy
and the rollout is recorded. This was done to circumvent the presence of
imbalanced rollouts that favor forward track segments and help capture
the environment dynamics better by exposing the model to a variety of
driving scenarios on different road segments.

4.4. WORLD MODEL 67

4.4 World Model

Please refer to 3.2 in the related work chapter for a detailed explanation of
the World Models paper. We have chosen their approach to learn a world
model, since it has been shown to work when doing planning in latent
space using the same Car racing environment. Also, the components they
use have successfully been employed to do planning in latent space in
many of the other works presented, including Deep Neuroevolution (see
3.3) and Dreamer (see 3.6) .

Unlike them, we do not do offline state-space planning by evolving a policy
controller to learn a good policy. Instead, we do online plan-space planning
by using RHEA to search for good policies in a local subspace of policies
during the game. Further, we augment a reward and terminal output in
a MDRNN so we can use it for online planning, which requires a model
with both dynamics and rewards. Thus, we learn a full model of the
environment by not using rewards from the real environment in our policy
search, which is arguably more puritan.

However, using random rollouts to train our MDRNN proved inssuficient,
since the MDRRN was unable to respect the relative rank order of rewards
in the environment. Namely, rewards should be higher when driving fast
on the road and lower when either driving on grass or not driving at all.
Thus, we chose to use a good RL agent (e.g. the controller in World
Models) to generate 10,000 additional rollouts, which helped sufficiently
explore the real environment state-space to learn a good reward function
with a rank order similar to the that of the real environment.

Finally, we implemented an iterative trainer that initializes a random
world model and repeatedly alternates between doing planning on it to
generate ”planning rollouts” and then using those rollouts to retrain an
improved world model for the next iteration. However, this proved to be
very slow and we have not had the time to show it is possible to learn
a good world model starting from random rollouts only, which is left for
future work. Thus, we currently assume access to rollouts obtained from
a good policy where the environment is sufficiently explored to train a re-
ward function that respects the rank order of rewards for online planning.

68 CHAPTER 4. APPROACH

4.4.1 Vision: Variational Auto Encoder (VAE)

A Variational Autoencoder (VAE) is one of the most popular generative
models that uses backpropagation-based function approximators (neural
networks) to a build generative model. A VAE is often used in the research
community because of its quick rise in popularity, mainly explained by the
fact that its assumptions are weak, training is fast with backpropagation
and its approximation has a small error. The idea behind a Variational
Autoencoder (VAE) was invented in 2014 (Kingma 2014). Unlike tradi-
tional autoencoders that map data X into a fixed deterministic encoding
Z, the VAE is a generative model since it maps data X into a probabilistic
distribution over a latent representation Pθ(Z|X) parameterized by θ.

The reason we use a VAE is to provide a compressed representation z by
learning to encode and decode in latent space. This lower dimensional
latent space is more efficient for our memory (MDRNN) and planning
agent (RHEA) to work with. A major benefit of a generative model is
the ability to generate new samples x′. Importantly, unlike traditional
autoencoders, we do not wish to learn spread out latent spaces. Instead,
we strive for a meaningful grouping, which means similar observations exist
in the same region of the latent space. Thus, samples that are close in the
latent space may produce similar images when decoded. A useful latent
encoding is obtained by using the KL divergence on the latent space to
keep the latent distribution close to that of a standard normal. Ultimately,
a generative model allows us to generate new samples efficiently in the
simulated environment. This addresses the sample inefficiency problem
and enables us to do planning by training a controller or doing policy
search in latent space, which is ideal in the car racing environment that
has a high dimensional observation space and continuous action space.

Architecture: Convolutional Variational Auto-Encoder (ConvVAE)

We use a Convolutional Variational Auto Encoder (ConvVAE) as our
visual component (V) to learn an abstract, compressed representation
zt ∈ R64 into of states (frames) st ∈ R64·64·3. Since the environment gives
observations as high dimensional pixel images, these are first resized to
64× 64 pixels. The resized images are used as observations in our world
model where each pixel is stored as three floating-point values between 0
and 1 that represent each of the RGB channels. Arguably, one might crop
the image further into the region relevant to planning and use greyscale
to further compress the frames. The dimension of our latent space is 64
similar to the Doom task in the original paper, since this proved to yield
better reconstructions than using Nz = 32 as in the Car racing task of the
paper. The ConvVAE architecture consists of inputs, layers, activations
and outputs, as shown in figure 4.4.

4.4. WORLD MODEL 69

Figure 4.4: VAE Flow Diagram

The encoder is a neural network that outputs a compressed representation
of a (preprocessed) state s (frame) using a deep CNN of four stacked con-
volutional layers and non-linear relu activations to compress the frame and
two fully-connected (dense) layers that encode the convolutional output
into low dimension vectors µz and σz:

encoder : s ∈ R64·64·3 → µz ∈ R64, σz ∈ R64 (4.1)

The means µz and standard deviations σz are used to sample a latent state
z from a univariate Gaussian N(µz, σzI) with diagonal variance that does
not model the correlation parameter p between each element of z :

z ∈ R64 ∼ P (z|s) = N(µz, σzI) (4.2)

Thus, unlike a traditional autoencoder that deterministically maps real
states into latent space s→ z, we enforce a Gaussian prior belief over the
latent vector, which limits the information capacity for compressing each
frame, but makes the world model more robust to unrealistic z ∈ R64

vectors generated by the memory model (M). The decoder is a neural
network that learns to decode and reconstruct the state (frame) s given
the latent state z using a deep CNN of four stacked deconvolution layers:

decoder : z ∈ R64 → s′ ∈ R64·64·3, s′ ≈ s (4.3)

Each convolution and deconvolution layer uses a stride of two and the
layers are shown in appendix figure A.4 as Activation-type Output Chan-
nels x Filter Size. All convolutional and deconvolutional layers use relu
activations except for the output layer, since the output has to be between
0 and 1 in images. We trained the model for 20 epochs over 10,000 roll-
outs collected from a random policy. For this, the Mean Squared Error
(MSE or L2 distance) between the input image s and the reconstruction s′

(reconstruction loss) is used, in addition to the KL loss, which measures
how much one probability distribution differs from another probability
distribution. The KL-divergence term acts as a regularizer of the model
parameters θ, encouraging the approximate posterior qθ(z|x) to be close
to a tractable standard normal prior p(z) (see (Kingma 2014, p. 11)).

70 CHAPTER 4. APPROACH

VAE KL Divergence Loss

We assume latent states follow a standard normal distribution z ∼ N(0, I),
the decoder reconstructions follow a multivariate normal distribution pθ(x|z) =
N(x|µ,Σ) and the latent encodings follow a multivariate Gaussian distri-
bution with diagonal covariance: qφ(z|x) = N(z|µ, σ2I).

We wish to maximize the lower bound L in equation A.18 by maximiz-
ing Ez∼qφ(z|x)[logpθ(x|z)] and minimizing KL(qφ(z|x)||p(z)). Assuming
qφ(z|x) is Gaussian and p(z) is a standard normal, then KL(qφ(z|x)||N(·))
has a closed form solution.

The KL divergence between the multivariate Gaussian encoder with di-
agonal covariance in Rn: qφ(z|x) = N(z|µ, σ2I) and prior z ∼ N(z|0, I):

KL(qφ(z|x)||p(z)) = −1

2

n∑
i=1

logσ2
i + 1− σ2

i − µ2
i (4.4)

The derivation of the KL divergence between two multivariate Gaussian
distributions is found in appendix A.26. This used used to find the above
closed form when z is assumed to be standard normal in appendix A.31.

VAE Reconstruction Loss

The decoder pθ(x|z) is assumed to be an isotropic Gaussian N(x|µ,Σ =
σ2I), which makes the negative log likelihood proportional to the L2

squared Euclidean distance (MSE) between p(z) and x (Doersch 2016).

We assume the components of x are independent and cov(xi, xj) = 0 for i 6=
j and var(xi) = σ2

i ,∀i. Then distL2(x, µ)2 = ||x− µ||22 =
∑d

i=1(xi − µi)2.

Thus, we can simply use the pixel-wise distance between the original and
reconstructed frames that are normalized with a sigmoid function. The
standard reconstruction loss is the squared euclidean (L2) distance be-
tween the original and reconstructed images, also referred to as mean
squared error or MSE. Thus, to evaluate how well our VAE reconstructs
training frames, we will do a pixel-to-pixel comparison of images using
the MSE.

VAE Total Loss (MSE + KL)

LV AE = Ez∼qφ(z|x)[−logpθ(x|z)] + KL(qφ(z|x) || p(z))

∝MSE(x, x̂) +KL(qφ(z|x) || p(z))

=
1

n

n∑
i=1

(xi − x̂i)2 − 1

2

n∑
i=1

logσ2
i + 1− σ2

i − µ2
i

(4.5)

4.4. WORLD MODEL 71

VAE training: Reparameterization Trick

The expectation term in the loss function invokes generating samples from
z ∼ qφ(z|x). Sampling is a stochastic process, which means we cannot
backpropagate gradients. To make the VAE trainable, the random vari-
able z is expressed as a deterministic variable z = µ + σ · ε, ε ∼ N(0, 1).
This reparameterization trick makes the z sampling process trainable,
since the stochasticity is transferred into a random variable ε ∼ N(0, I)
while the model is trained by learning the mean µ and variance σ2 of the
distribution.

Figure 4.5: Reparameterization trick makes z sampling process trainable
(Weng 2018b)

The theory behind the VAE

Please refer to appendix A.3.1 for an explanation of generative modelling
and its purpose. Also, refer to appendix A.3.2 for a detailed derivation
of the theory behind the Variational Auto Encoder. This includes the
interpretation of a VAE as a Probabilistic Graphical Model (PGM) and
the underlying theoretical concepts, such as, Bayesian Inference, Approx-
imate Inference, Variational Inference and Kl Divergence and Maximum
Likelihood Estimation. In particular, it explains how to approach genera-
tive modelling by approximation of a posterior from a variational inference
perspective. Finally, it contains all derivations used in the final VAE ob-
jective loss function, which includes an explanation of the KL divergence
score and its derivation. Most importantly, we wish to find a model that is
representative of our data X: P (X) =

∫
z
P (X|z; θ)P (z)dz. However, com-

puting the integral over our latent z is intractable, which is why we direct
our attention to approximate solutions, as described in the appendix.

72 CHAPTER 4. APPROACH

4.4.2 Memory: Mixture Density Recurrent Neural
Network (MDRNN)

For the Memory component, we use an LSTM with 512 hidden units com-
bined with a Mixture Density Network (MDN) with five Gaussian mixture
components as the output layer. The Mixture-Density Recurrent Neural
Network (MD-RNN) is used to predict the latent future as a Gaussian
mixture model. The VAE vision component is used to compress what
the agent sees at each time frame, whereas the MDRNN memory compo-
nent is used to compress what happens over time by predicting the future
latent vectors z that the VAE is expected to produce. Most complex
environments are stochastic in nature so the RNN is trained to output
a probability density function p(z), instead of a deterministic prediction
of z. For this purpose, a Mixture Density Network (MDN) is used to
transform the output of an LSTM to form the parameters of a mixture
distribution with Gaussian mixture components. Thus, p(z) is approxi-
mated as a mixture of Gaussian distribution and the RNN is trained to
output the distribution of the next latent vector zt+1 given past informa-
tion: P (zt+1|at, zt, ht) where at is the action taken at time t and ht is the
hidden state of the RNN at time t.

By default, standard RNNs are inherently one dimensional and therefore
poorly suited to multidimensional data like images. Thus, in order to
use RNNs on multi-dimensional tasks, the data must be pre-processed to
one dimension. The standard LSTM is also one-dimensional, since the cell
contains a single self connnection, whose activation is controlled by a single
forget gate (Graves, Fernández, and Schmidbauer 2013, p. 6). Thus, we
use the VAE vision component to compress 2D frames into a 1D latent
state in Nz = 64 dimensions, which enables us to use a standard LSTM
to unroll the future in latent space. The choice of the number of hidden
units in the LSTM was based on our experiment results and 512 units
was complex enough to capture the spatial and temporal representations
of frames in latent space. We extend the output of the MDRNN with the
expected (mean) reward to obtain a fully learned world model that may
be used for planning online entirely in latent space. We do not model
the correlation parameter between each element in z and instead have the
MDRNN output a diagonal covariance matrix of a factored multivariate
Gausssian distribution.

Figure 4.6: MDRNN model data with probability distributions composed
of several components parameterized by π, µ and σ. A Gaussian mixture
is used to model a variety of futures (Ellefsen, Martin, and Torresen 2019)

4.4. WORLD MODEL 73

Gaussian Mixture Model (GMM)

The output of the MDRNN are the parameters π, µ, σ of a parametric
Gaussian mixture model where π is used to represent the mixture proba-
bilities:

p(z|θ) = p(z|π, µ,Σ) =
k∑
k=1

πk ·N(z|µk,Σk) (4.6)

Each mixture component is represented by a multivariate Gaussian dis-
tribution with diagonal covariance Σk = σ2I where z ∈ Rd:

N(z|µk,Σk) =
1

(2π)d/2 · |Σk|1/2
exp(−1

2
(x− µk)TΣ−1

k (x− µk)) (4.7)

A diagonal covariance is used to reduce the parameter space from d2 to d
at the cost of flexibility, since this means we ignore the correlation between
individual latent values. However, intuitively the compressed latent vector
should mainly contain uncorrelated values that are ”uniquely” important
for reconstructing the original observations, since they are constructed us-
ing the VAE, which does a kind of dimensionality reduction when reducing
the original observations with convolution filters.

By using a GMM with diagonal covariance, we can approximate complex
probability distributions. The mixture probabilities are parameterized as
logπ in PyTorch and recovered by taking the exponential. The mixture co-
efficients function as priors that describe the probability of the future tar-
get latent vector zt+1 having been generated by that particular Gaussian
mixture distribution. The mixture coefficients are transformed via soft-
max to ensure the normalization axiom is satisfied, meaning

∑k
k=1 πk = 1.

Further, in order to interpret the mixture components as probabilities,
they are ensured to be non-negative 0 ≤ πk ≤ 1.

Negative Log Likelihood Loss and LogSumExp Trick

Similar to the VAE, the parameters θ = {π, µ, σ} of the Gaussian mixture
model are found with maximum likelihood estimation. Thus, we wish to
find the parameters θ that maximize the likelihood of the data, which is
equivalent to minimizing the negative log likelihood:

θ∗ML = argmaxθp(z|θ) = argminθ={π,µ,Σ} − logp(z|π, µ,Σ) (4.8)

The likelihood function is given by (under the IID assumption):

L(θ|Z) = f(Z|θ) = f(z1, . . . , zn|θ) =
n∏
i=1

p(zi|θ) (4.9)

The negative log likelihood function is given by:

−LL(θ) = −logL(θ|Z) = −log(
n∏
i=1

p(zi|θ)) = −
n∑
i=1

logp(zi|θ) (4.10)

74 CHAPTER 4. APPROACH

This loss function is hard to optimize because the sum over the compo-
nents appears inside the log, thus coupling all the parameters:

−LL(θ) = −
n∑
i=1

logp(zi|θ) = −
n∑
i=1

log(
k∑
k=1

πk ·N(z|µk,Σk)) (4.11)

Thus, we cannot obtain a closed-form analytical solution but need to use
an iterative method to find a solution, which is typically done using ei-
ther a Stochastic Gradient Descent (SGD) algorithm or an Expectation
Maximization (EM) algorithm. We use a variant of SGD called Adap-
tive Moment Estimation (Adam), which is another optimization method
used to iteratively update the MDRNN weights by computing individual
adaptive learning rates for different parameters.

Another drawback of the GMM is that there are typically many of pa-
rameters to learn so it may require lots of data and iterations to get good
results. Namely, an unconstrained model with K mixtures (or simply K
clusters) and D−dimensional latent data involves fitting D × D × K +
D×K+K parameters, since there are K covariance matrices each of size
D × D, K mean vectors of length D and K mixture coefficient weights.
This may pose a problem for datasets with a large number of dimensions
(e.g. images), since the number of parameters grows roughly as the square
of the dimension: O(K ×D ×D) = O(D2), D > K. Thus, it is common
to make assumptions to simplify the problem like fixing the covariance
matrix of each component to be diagonal so the number of parameters
grows roughly linearly in the number of dimensions: O(D).

Finally, there is a significant problem associated with the Maximum Like-
lihood framework applied to Gaussian mixture models due to the presence
of singularities (i.e., point at which the likelihood function takes an in-
finite value). Namely, assume one of the mixture components j has its
mean µj equal to one of the data points so µ = zn. This data point will
contribute a term in the likelihood function of the form:

N(zn|zn, σ2
j I) =

1

(π1/2)σj
(4.12)

The limit σj → 0 will make this term go to infinity so the log likelihood
will also go to infinity. Thus, the maximization of the log likelihood func-
tion is not a well posed problem due to the presence of such singularities,
which occur whenever a Gaussian component ’collapses’ onto a specific
data point. Thus, we need to either reset or throw away Gaussian mix-
ture components approaching infinite likelihood. Alternatively, the EM
algorithm can be used to find the maximum a posteriori (MAP) estimate,
which uses a prior distribution as a regularization of the ML estimation.

4.4. WORLD MODEL 75

Notice, the problem only occurs in a mixture Gaussian, whereas a single

Gaussian will have multiplicative factors limσ→0 e
(zn−µ)2

2σ2 = 0 multiplied
onto the normalization term limσ→0

1√
2πσ

= ∞ so the overall likelihood
goes to zero. However, with two or more mixture components, one of
them can collapse onto a point and contribute an ever increasing additive
value to the log likelihood.

Figure 4.7: Singularity in likelihood function due to mixture (Bishop 2006,
p. 434)

Finally, one needs to worry about the problem of underflow. Underflow is
the condition where the result of a calculation is a number of smaller
absolute value than the computer can actually represent on its CPU.
Typically, likelihoods are too small to be represented as floating-point
numbers, which is solved by using log-likelihoods instead. This works
great when likelihoods are multiplied so the condensed product becomes
an expanded addition of log values. However, in a Gaussian mixture,
we take the log of a sum over mixture components whose likelihoods are
frequently small enough to lead to underflow. For this purpose, we use
the ”logsumexp” trick to calculate log(

∑k
k=1 πk ·N(z|µk,Σk)) in equation

4.11 (GMM negative log likelihood) where each mixture component k is
denoted Ak = πk ·N(z|µk,Σk). The standard ”logsumexp” trick computes
log(A1+. . .+Ak) from log values logA1 to logAk by dividing by the largest
term Am and converting the scaled terms to linear domain:

Ak = πkN(zn|πk,Σk), Am = maxAk , k ∈ 1, . . . , K

LSE[logA.] = log(
K∑
k=1

Ak) = logAm + log(
K∑
k=1

elogAk−logAm)
(4.13)

This changes the GMM log likelihood function (see A.34 for derivation)
such that the final loss function is this expected negative log likelihood:

−L(Z|π, µ,Σ) = − 1

n

N∑
i=1

logAm + log(
K∑
k=1

exp(logAk − logAm)) (4.14)

The ”log-sum-exp” trick is used to avoid numeric underflow and helps
improve the numeric stability when computing the log-likelihood of the
GMM whose Gaussian mixture components easily underflow.

76 CHAPTER 4. APPROACH

Training: Teacher Forcing

The MDRNN was trained for 20 epochs like the VAE, but the training
data consisted of rollouts from both a random policy and the good RL
controller agent in the original paper. Teacher forcing is used to quickly
and efficiently train the LSTM by using ground truth latent observations
from a prior time step as input. Formally, teacher forcing is a procedure
in which the model receives the ground truth output zt as input at time
t + 1, instead of using the previously predicted output ẑt. Unlike the
original authors, we do not store a precomputed set of µt and σt for
each of the frames when training the MDRNN for efficiency. We use the
original frames in our training data and use the VAE during training to
encode the frames into the parameters of our latent space distribution and
sample zt ∼ N(µt, σ

2
t I) each time we construct a training batch, which

helps prevent overfitting the MDRNN to a specific sample zt.

4.5 Control: Plan with RHEA Policy Search

This section will describe components and extensions used to enable plan-
ning in our world model approach. We take point of departure in the
vanilla RHEA algorithm described in the background chapter. Please re-
fer to section 2.4.3 for a detailed description of the RHEA and RMHC
planning algorithms.

4.5.1 Simulated Environment

One of the critical components in planning is the usage of a forward-
model that enables evaluation of simulated trajectories. Thus, to enable
planning in the model, we also need to support the following operations:

• consecutive transitions in latent space (step function)

• rollbacks to earlier latent states (evaluation)

• consecutive synchronization of world model and real environment

The step function is supported by the MDRNN and is a critical compo-
nent, as it enables the agent to perform state transitions in the latent
space and get feedback based on a given trajectory. Without it, this may
prevent the agent from planning altogether. consecutive synchronization
and rollbacks are mechanisms that are not supported out-of-the-box but
are two critical operations necessary to do planning in latent space. To
ensure that the model is continuously synchronized with the real envi-
ronment, a procedure is needed to update the current latent space as we
step in the real environment. If the latent space is not synchronized, the
agent may falsely do planning on a latent space representation that does
not capture the current state. Consequently, the trajectory produced may
not apply well to the real environment and result in poor planning.

4.5. CONTROL: PLAN WITH RHEA POLICY SEARCH 77

In our case, continuous latent state rollbacks is necessary for planning, as it
enables continuous evaluations of simulated planning trajectories. If this
is unsupported, the agents may at most evaluate one trajectory per game
tick, since it is unable to rollback to an initial state and evaluate other
planning trajectories. Consequently, being limited to a single planning
trajectory may lead to poor planning, as the agent cannot sufficiently
explore the policy search space for promising simulated plans. Thus, a
simulated environment was implemented to support the above operations
by encapsulating the MDRNN and VAE in a simulated environment.

The simulated environment acts as an interface to the world model that
enables online planning in latent space. It has a step function a, z, h →
z′, h′, r, d that takes an action, latent state and hidden state and returns
a predicted next latent state, next hidden state, reward and terminal
z′, h′, r, d. By default, the simulated environment does not keep track of
the next latent zt+1 and hidden states ht+1 unless the simulated environ-
ment acts as the real environment. Instead, they are tracked by the callers
of the step function. Since they are self-contained, the simulated environ-
ment has all it needs to generate next latent state and reward predictions,
which enables the support of latent space synchronization and rollbacks.

Latent space synchronization

For latent space synchronization, a game controller starts by defining the
initial latent and hidden state {z0, h0}, consisting of a zero vector for
the hidden state and a VAE encoded latent state of the initial game state
(frame). The game controller then proceeds to keep track of the latent and
hidden state, by simultaneously stepping the real environment and simu-
lated environment with the same action together with the current states at
time t, {zt, ht} for the simulated environment. The returned {zt+1, ht+1}
from the simulated environment overwrites the current {zt, ht} and this
loop repeats until the game ends. The persisted latent and hidden state
{zt, ht} in the game controller is then provided to the planning algorithm
as the initial state.

Latent state rollbacks and planning flow

Similar to the game controller, RHEA uses the simulated environment.
Instead of synchronization, the planning algorithm uses it as a forward
model to simulate trajectories and perform rollbacks on {z, h}. When
RHEA evaluates a population, the initial {z0, h0} from the game con-
troller is copied to each individual and assigned as current {zt, ht}. When
evaluating an individual, each of its planned actions is stepped in the sim-
ulated environment. While stepping, the current individual states {zt, ht}
are updated with the ones returned from the simulated environment until
all actions are exhausted. A rollback is performed when all individuals are
evaluated (and evolved) where the initial {z0, h0} is copied and assigned as
current {zt, ht} for the next-generation population. This process repeats
until the number of generations is satisfied (see figure 4.8).

78 CHAPTER 4. APPROACH

Figure 4.8: Planning with independent states and rollbacks. Each RHEA
individual is given an initial {z, h} and is updated at each time step up
to a horizon H. The process is repeated at each generation

Concurrent Evaluations

Since the latent and hidden states are independent and fully decoupled
from the simulated environment, it is possible to use the step function
concurrently without the next latent state, reward predictions and hid-
den state being affected by concurrency issues. Thus, to speed up the
planning process of RHEA, we parallelize the evaluation step such that
each individual in the populated is evaluated concurrently, which led to
significant planning time reductions.

Custom Action Sampling

In order to avoid accelerating and breaking at the same time, we modified
the sampling function such that the acceleration and gas is determined by
a number uniformly sampled between -1 and 1. If the number is between
-1 and 0, the absolute value of that corresponds to the braking component
and acceleration is set to 0. If the number is between 0 and 1, the number
corresponds to the acceleration and braking is set to 0. Further, we cap
the acceleration at some threshold (e.g. [0, 0.3-0.5] instead of [0, 1]) to
avoid the car from quickly reaching very high speeds where it has less road
grip and becomes more likely to drive into the grass.

4.5.2 Extensions to RHEA and RMHC

Shift Buffer

Shift buffer is a population management technique used to avoid repeating
the entire search process from scratch at every new game tick. For this,
we keep the final population evolved during one game tick to the next.
Since the first action of the best elite is executed, all first actions from the
population are removed and a new random action is appended at the end.
Arguably, this may help retain planned policies from previously instead of
starting from scratch. Thus, it is interesting to see how shift buffer affects
the planning performance in car racing.

4.5. CONTROL: PLAN WITH RHEA POLICY SEARCH 79

EvolutionHandler

An important extension to RHEA and RMHC is the EvolutionHandler.
Instead of hardcoding the concrete evolution operators in the planning al-
gorithms (i.e., selection, crossover and mutation), the operators are stan-
dardized in the evolution handler. This allowed us to write common evo-
lution operators such as mutation once for RMHC and RHEA, to avoid
code duplication. Secondly, by abstracting the evolution operators away
from the planning algorithms, one may easily replace and extend with
other operators, which allowed us to quickly see the effects of different
operators.

Finally and most importantly, the ability to dynamically switch between
different evolutionary operators was a crucial feature, since this made
it possible to do automated NTBEA parameter tuning. Without the
ability to dynamically interchange evolution operations, we cannot use
NTBEA for efficient parameter tuning, since it depends on the ability to
pick different parameter configurations. Namely, it is limited to simple
typed parameters such as the horizon length, generations, or population
size, thus reducing the likelihood of finding a somewhat optimal parameter
configuration. The final implementation of the evolution handler can be
found in evolutionhandler.py file in package tuning.

Macro Actions and MC Rollouts - Discontinued Extensions

Initially, we included Monte Carlo rollouts (MC rollouts) and macro ac-
tions as additional extensions but these were discontinued due to poor
results. The motivation for using MC rollouts was to approximate the
expected reward beyond the planning horizon by random sampling. How-
ever, MC rollouts yielded poor reward predictions, which might be due
to the model not being able to look into the future beyond the horizon.
Also, MC rollouts made the evaluation process much slower.

Macro actions were implemented to speed up gameplay and because the
agent most likely wants to be able to repeat its previous policy without
replanning in certain scenarios (e.g. keep driving forward on a straight
road). The motivation was to repeat a planned action n number of times
before executing another planning step. While the approach seems to
speed up the game, the agent’s performance dropped significantly when
using a large macro action. For instance, if the planned action was to turn
left, repeating this n many times would result in the car drifting out of
control. Noticeably, the agent performed best with small macro actions
(i.e., 2-3), which defeated the purpose of using macro actions although it
might be interesting for future work.

Chapter 5

Experiments

This chapter will describe the primary experiments and the results pro-
duced in this thesis. All experiments were executed on a desktop machine
with an AMD Ryzen-7-3700X CPU with 8 x 4.2 GHz cores and up to 16
logical processors. The machine also has 32 GB RAM and used Nvidia
RTX 2070 Super with 8 GB VRAM as GPU.

The experiments are grouped into 3 groups with the ultimate purpose of
finding a world model and planning algorithm configuration that together
forms an agent that may perform well in the car racing game.

The first group of experiments finds a preliminary set of world wodels that
are representative of the dynamics in the car racing environment. This is
crucial, since a world model is used as a forward model in the planning
algorithms and it strongly affects their overall planning performance.

The second group of experiments uses a subset of the world models based
previous group of experiment. Each world model is then combined with a
planning algorithm where the parameters are tuned with the N-tuple ban-
dit evolutionary algorithm (NTBEA). Each combination of world model
and planning algorithm (agent) are then benchmarked with the prelim-
inary and tuned parameters. We run the agents 10 times on a simple
track with no extreme turns and 10 times on random tracks where the
performance of an agent is the mean reward of the runs. The choice of
tracks enables the ability to compare how well the agents perform on eas-
ier tracks and how well they perform on difficult tracks, thus showcasing
the overall capabilities of the agents.

The third and final group of experiments investigates how different horizon
sizes, shift buffers and using the parameters from the best model on other
models affects the planning performance in the car racing game. Each
configuration is then evaluated 10 times on the car racings tracks where
the agent’s performance is the mean of the runs.

80

5.1. PRELIMINARY PLANNING EXPERIMENTS 81

5.1 Preliminary Planning Experiments

This section describes the experiments conducted to find a preliminary set
of world models useful for planning and describes how they are evaluated.

Setup

Before running any experiments, it is critical to define a set of repeatable
and consistent test cases with well-defined measurement factors that de-
scribe the model’s ability to represent the essential dynamics of the car
racing game that the planning algorithms need during planning.

In this regard, 3 measurement factors are established:

• VAE encoding of observation and how well information is preserved.

• Rank order of reward signal

• Reward signal strength

The VAE represents the sensory input of the model by encoding an ob-
servation into a compact latent vector that the MDRNN uses to predict
how state transitions behave. However, when compressing an observa-
tion, some information is lost due to the reduction of dimensions. The
loss of information may negatively impact the model’s ability to model
the dynamics of the real environment. Hence, the model’s performance is
very likely dependent on the VAE’s ability to maximize the information
retained when encoding an observation, which is done by minimizing the
reconstruction error during training. When testing a model, we observe
the quality of the reconstructions next to actual frames, to give an overall
estimate on the VAE’s ability to retain information.

The rank order and strength of the reward signal produced by the model
has a significant impact on the final trajectory produced by the planning
algorithms. Even though the rewards predicted by the model may differ
from the rewards of the real environment, the rank order of the rewards
must be preserved by the model. Incorrect rank order of rewards may
produce very poor planning trajectories such as driving off-road due to
false-positive reward signals. The strength of the reward signal may help
reinforce the rank order, such as perfect driving, producing larger positive
rewards in comparison to semi-perfect driving.

The measurement factors are observed in 13 consistent and repeatable test
cases that represent different driving segment scenarios during car racing:

• Forward drive on road: slow, medium, fast

• Drive on grass

• No movement

• Perfect turns: left, right, u-turn, s-turn

• Failed turns: left, right, u-turn, s-turn

82 CHAPTER 5. EXPERIMENTS

Arguably, since the tracks are randomly generated, these test cases may
not cover all different scenarios a car may be exposed to. However, the
test cases do provide a general approximation of the scenarios, which
allow us to measure the quality of our MDRNN dynamics model. The
forward drive tests measures its ability to represent the reward signal
when driving forward at different speeds and the reward rank order when
driving slow and fast. We want to ensure that driving on the road yields
a positive reward signal and that the magnitude of the reward signal is
greater when driving fast as opposed to driving slow. The drive-on-grass
tests measure the model’s ability to punish bad driving by producing
negative rewards when driving off-road. The no-movement test measures
if the model punishes the agent for staying still and the turn tests measure
the model’s reward signal when completing turns or failing to complete
them.

Finally, the model tests do not use any planning agent to control the
vehicle but instead use hardcoded action sequences. This ensures that
the test results may be successfully reproduced, since the car driving is
made deterministic and repeatable.

Preliminary planning tests

The above tests partly describe the quality of the different models. How-
ever, what finally matters is how they perform as forward models in a
planning algorithm. Due to time constraints, we did not perform exhaus-
tive parameter tuning and planning tests for all the models produced.
Instead, we ran preliminary planning tests based on the same forward
and corner test scenarios with RHEA and RMHC. The total sum of re-
wards across these tests is used as an estimate of the model performance.
The most promising models are then selected for full parameter-tuning
and benchmarking. Below are the planning parameters used for prelim-
inary planning tests. The parameters are set such that both RHEA and
RMHC take approximately 1 second per planning step.

Preliminary Planning Algorithm Parameters

• Horizon: 10 (RHEA) - 20 (RMHC)

• Generation: 10 (RHEA) - 15 (RMHC)

• Mutation type: uniform

• Shift buffer: True

• Population: 8 (RHEA) - 1 (RMHC)

• Selection type (RHEA): tournament

• Crossover type (RHEA): uniform

• Genetic operator (RHEA): crossover + mutation

5.1. PRELIMINARY PLANNING EXPERIMENTS 83

Preliminary Results

VAE Reconstructions Results

Figure 5.1: VAE reconstructions of frames from the real environment
from VAE trained on random policy only. VAEs were in general able
to reconstruct the original frames but the quality of the reconstructions
highly depends on the samples used to train

Almost all VAEs trained were able to reconstruct the input frames with
close similarity whenever the car was on the road and off-road, as seen in
figure 5.1. However, using rollouts solely based on a good policy resulted
in the VAE not being able to reconstruct scenarios when driving off-road.
Hence the car was always somewhat on the road, as seen in figure 5.2.
This is likely due to the lack of observations where the car was driving
off-road and this may impact how well the agent plans.

Alternatively, using rollouts solely based on random rollouts, the VAE
was able to reconstruct off-road an on-road scenarios with close similarity
to the input. Using a random policy to sample the rollouts may result in
higher diversity in the rollout data, as the car may drive on and off the
road.

The samples used to train the VAE seem to lay the foundation of how
well it can encode and reconstruct different scenarios in the environment.
Thus, having a diverse set of rollouts that contain different scenarios of
car driving yielded the best reconstruction quality.

By observing the loss of the VAE with respect to the different rollout
datasets in figure 5.3, the general loss progression, as well as the final loss
after 20 epochs, were very similar when using rollouts solely based on a
random policy or rollouts based on a good policy.

84 CHAPTER 5. EXPERIMENTS

Figure 5.2: VAE trained on samples from a good policy only was unable
to reconstruct frames during bad driving. Observe how the car is still on
the road on the VAE decoded image (right) even though it is on the grass
in the real environment (left). This is due to the lack of off-road driving
observation. Hence a good VAE is trained on a diverse rollout dataset
based on different driving behavior and scenarios

The VAE trained on random policy rollouts has a slightly smaller final
loss of 23.3 compared to the VAE trained on good policy rollouts with
a loss of 25.3. Training a VAE with both rollout datasets combined,
resulted in a much higher test loss, which is likely due to the increased
diversity of the data being used. Surprisingly, the overall reconstruction
quality did not improve much when comparing it with the VAE trained on
random policy rollouts. Thus, using 10k random policy rollouts to train
the VAE was sufficient in representing the different scenarios of the car
racing environment.

Figure 5.3: VAE test and train loss between VAEs trained with different
datasets. The loss when using solely good or random policy rollouts was
very similar. Combining both random and good policy data resulted in
higher test loss, which might be due to the increased diversity of the data
yielding a higher generalization error. Training a VAE with random policy
rollouts was sufficient in representing different scenarios

5.1. PRELIMINARY PLANNING EXPERIMENTS 85

MDRNN Parameters and Preliminary Planning Results

Model Units Sequence Latent Rollout Data
A 256 64 32 10k Random Policy
B 256 64 32 10k Good Policy
C 256 64 32 20k Good+Random
D 256 64 32 10k Random+5K Passive
E 256 64 32 20k Good+Random+5k Passive
F 256 64 32 10k Good+Random
G 256 64 64 20k Good+Random
H 512 64 32 20k Good+Random
I 512 64 64 20k Good+Random
J 512 64 64 10k Good+Random+10k Turns
K 512 64 64 20k Good+Random+10k R-Turns
L 512 500 64 20k Good+Random
M 512 500 64 20k Random
N 1024 500 64 20k Good+Random

Table 5.1: MDRNN Parameters (number of hidden units, sequence length
and latent dimensions) and data set used for each world model. Model L
performed best in the preliminary planning tests as well as in the model
tests. Surprisingly, model F, which was less complex and trained on less
data also showed promising tests results. The final models selected for
benchmarking were model F, L and M

Model A-F

The initial model experiments (A-F) focused on using the same parameters
presented in the original world model paper. Each model used 256 hidden
units and a latent vector size of 32, with the only difference being that
that we used a sequence length of 64 instead of 500 for faster training.

Model A (initial MDRNN) was trained on 10,000 random rollouts, similar
to the MDRNN trained in the World Model paper. Disappointingly, we
got poor results after running the preliminary planning and model tests
with RHEA and RMHC. Model A was not performing well on any of
the test cases. The minimum accumulated reward of completing all test
cases is 205. Using model A, the total reward with RHEA was only 56 and
surprisingly RMHC managed to get a total reward of 91, since it managed
to get into road turns before ending in the grass.

One explanation of model A’s poor planning results may be due to the
fact that using rollouts based on a random policy does not sufficiently
explore the state space so that the MDRNN may not properly capture
the environment dynamics and rewards.

86 CHAPTER 5. EXPERIMENTS

For example, good driving behavior may generate experiences required
to produce strong reward signals within the world model such that the
MDRNN learns to capture the fact that it is preferable to stay on the road.
Also, the car usually ended up driving quickly into the grass rather than
completing a turn or staying on the road in most of the rollout sequences.
Thus, it was interesting to investigate an MDRNN model based solely on
rollouts from a good policy (model B) to better explore the environment.

Model B was trained on good policy rollouts and yielded 120 in total
test reward with RHEA, which is a 140% increase compared to model A.
RMHC achieved a total test reward of 136, which is a 45% increase in
performance. Both RHEA and RMHC did well on the forward drive tests
but experienced problems on turns, which resulted in the agent driving
into the grass. By visual inspection of the MDRNN reconstructions, it
was obvious that the MDRNN still believed that it was on the the road
in the simulated environment as shown on figure 5.4, despite it being on
grass. A further inspection into the model tests revealed that the reward
signal when driving on the grass near the road was similar to the reward
signal when the car was on the road. This incorrect rank order of rewards
may confuse the planning agent in finding a suboptimal trajectory and
consequently lead it to belief that driving into grass is locally optimal.

Figure 5.4: Comparison between model B MDRNN reconstruction against
real frame. The model still believes the car is on the road, despite it being
on grass. This is very likely due to bad driving samples being underrep-
resented when using good policy rollouts during MDRNN training

A possible explanation to this anomaly is due to the under representation
of rollouts that exhibit bad driving behavior, similarly to the problem with
model A, that was trained solely on random data. Training the MDRNN
on rollouts from only a good policy seemed to render it unable to produce
a strong negative reward signal, which yielded poor planning results.

5.1. PRELIMINARY PLANNING EXPERIMENTS 87

Model C investigates if the combination of random and good policy
rollouts improves the planning performance of the agent. Model C was
trained on 10,000 random and 10,000 good policy rollouts and the results
seemed promising. Both RHEA and RMHC saw an increase in perfor-
mance. RMHC only had a 3% increase in performance, while RHEA had
a 17% increase in performance.

Interestingly, RHEA outperformed RMHC in many test cases, especially
during turns where RMHC seemed to struggle in completing the turns.
The poor performance of RMHC is likely due to it getting stuck in a
local maxima when exploring its policy subspace, considering that only
one individual is evaluated and randomly mutated in RMHC. RHEA uses
a population to better cope with local maximas, which helps promote
continuous diversity in the policy subspace of the population. Despite the
improvements with model C, the overall planning was still not sufficiently
good as both RMHC and RHEA were having trouble in completing turns
and manually adjusting the planning parameters did not seem to yield
any noticeable improvements compared to the baseline parameters.

Figure 5.5: Histogram of model C average reward signal when driving
with different speeds. Notice how the rank order is reversed such that
driving slow had a higher reward signal compared to slow driving and
staying still yields a high positive reward signal. This is a clear indication
that something is wrong with the MDRNNs reward predictions

Further inspection of the reward signal showed that the model was unable
to capture the rank order of the rewards, as shown in figure 5.5. The rank
order of the speed was reversed, which means that driving slow would
yield a higher reward signal than driving fast. Additionally, staying still
produced a higher reward signal than driving fast. This was a clear in-
dication that something was wrong with the reward signal and might be
why the agent was still struggling to stay on the road.

88 CHAPTER 5. EXPERIMENTS

Model F was trained with 5000 random and 5000 good policy rollouts,
which is half the amount of data used for model C. Surprisingly, the
reduction yielded a slight increase in planning performance for RHEA
with a total average test reward of 175, compared to model C with 169
total average test reward. RMHC did also see minor improvements in
planning performance with a total average test reward of 139, as opposed
to model C with an average test reward of 148. Further inspection of the
reward rank order showed that the reduction seemed to have corrected
the incorrect rank order from model C as shown on figure 5.6.

Figure 5.6: Histogram of model F average reward signal when driving with
different speeds. The rank order of speed is in correct order (e.g. driving
fast yields a higher reward than driving slow) by using half the rollout (5k
instead of 10k). The corrected rank order explain the significant planning
improvements in model F compared to model C whose rank order was
reversed

Data: Diversity and Size

It seems that the rank order and quality of the latent predictions generated
by the MDRNN highly depended on the diversity and size of the rollout
data. Namely, we saw significant planning improvements when combining
rollouts based on both a random policy and good policy. Intuitively, this
makes sense, since it allows the MDRNN to learn the dynamics across
more diverse rollouts that exhibit both good and bad driving behavior.
Using only one of the two yielded poor results, since our MDRNN was
unable to capture the full reward spectrum yielded by different driving
behaviors.

Moreover, it was expected that using more rollouts (20,000) would allow
the MDRNN to better capture the reward signal in the environment than
using fewer rollouts (10,000). However, this was not the case in model F
when compared to model C, as the increased number of rollouts failed to
capture the reward rank order, as shown in figure 5.5. We were not sure
why this was the case but suspected that the reason might be twofold.

5.1. PRELIMINARY PLANNING EXPERIMENTS 89

Firstly, the increased number of rollouts might have reinforced the already
imbalanced data by introducing more frequently occurring observations
(e.g. straight roads and left turns) and undermining some of the infrequent
observations (e.g. s-turns and right-turns). Secondly, the model might
be insufficiently complex to benefit from more data to capture the reward
signal accurately. However, we were not certain and ended up using 20,000
rollouts in our final model that was more complex and were successfully
able to capture the reward rank order, although 10,000 rollouts might
have been sufficient.

Model G-N - Adjusting complexity of MDRNN

Based on the previous results, model F was the best performing model
amongst the initial models (A-F). Still, the overall planning results (par-
ticularly during turns) begged for improvements. Thus, it was interesting
to investigate whether increasing the complexity of the MDRNN through
its number of hidden units, latent size and sequence length would help
improve the planning performance of the agent.

Latent size and Hidden Units

Model G - The premise of increasing the latent vector size from 32 to 64
was to investigate whether the increased amount of information retained
in the latent vector would help improve planning. This proved to be true
for RHEA that saw a 15 percent increase in performance (from 145 to
170), while RMHC did not see any improvements, despite correct rank
rank order.

Model H - The premise of increasing the number of hidden units was
to investigate whether a more complex MDRRN model would help better
capture the dynamics and reward signal of the environment than our
baseline MDRNN. Thus, we doubled the number of hidden units in model
H from 256 to 512. The preliminary tests for RHEA yielded an average
test reward of 178, which was 18% increase in performance compared
to model C. Moreover, comparing model H to model F with an average
test reward of 171, model H had a slightly higher average test reward of
178. RMHC also showed performance improvements when compared to
model C and model F. Thus, by only increasing the number of hidden
units, a substantial performance gain was obtained when compared to
using a simpler model, which might indicate that we had previously used
an insufficiently complex model that did not capture the environment
dynamics and rewards.

Model I - significant performance improvements were seen with model
I, which used the increased latent vector size and number of hidden units
from model G and H. The RHEA average test reward improved by 30%
from model C and 15% from model F while RMHC average test reward
improved by 23% from model C and 22% from model F as showed on
figure 5.7. By inspecting the rank order and reward signal on figure 5.8,
shows that the reward rank order is correct after increasing the complexity
of the model and the rank order is well separated (I and H).

90 CHAPTER 5. EXPERIMENTS

Figure 5.7: Histogram of model C, F, G, H, I: total average preliminary
planning test reward. Increasing either latent vector size (G), hidden units
(H) or both (I) in the MDRNN proved to increase planning performance
when compared to the baseline models (C and F).

Figure 5.8: Histogram of model G-I average reward signal when driving at
different speeds. Increasing either latent size (G) or doubling the number
of hidden units (H) resulted in correct rank order of the rewards compared
to model C, whose rank order was reversed. Increasing the number of
hidden units resulted in a greater reward signal difference between the
orders. Model I that combined both adjustments of latent size and number
of hidden units yielded the overall best tests results amongst the three
models

5.1. PRELIMINARY PLANNING EXPERIMENTS 91

Model N - Too complex MDRNN

While 512 hidden units in the MDRNN proved to be a sweet spot with re-
spect to planning performance, increasing the hidden units to 1024 (model
N) resulted in a catastrophic 71% drop in planning performance for RHEA
and 45% drop for RMHC when compared to model C and failed all tests.
Further inspection of the reward signal showed an incorrect rank order of
the rewards. Arguably, the performance drop is likely due to the MDRNN
becoming too complex and hence having overfitted to the reward observa-
tions of the training data. Thus, increasing the complexity of the MDRNN
may improve the planning performance of the agent, since it allows the
MDRNN to capture the dynamics and correlation of the environment and
reward better than a less complex MDRNN. However, if the MDRNN be-
comes too complex and is not somehow penalized, the MDRNN is more
likely to overfit to the training data and generalize poorly, which is why
we had to carefully inspect the test loss.

Model L-M - Increasing Sequence Length

All previous models (A-K) use a sequence length of 64, but further in-
spection revealed that a sequence length of 64 constitutes a very short
road segment, as shown in figure 5.9 where we compare it with a sequence
length of 500. Thus, we investigated the effect of using a short versus a
long sequence length. The hypothesis was that a long sequence of frames
should enable the MDRNN to better capture long-term temporal depen-
dencies than using a short sequence. Namely, a long sequence may cover
a full complete turn compared to a short sequence, which may only cover
half a turn.

Figure 5.9: Car Position Image Sequence vs MDRNN Sequence Length.
Increasing the sequence length allows the MDRNN to better capture long
term temporal dependencies compared to a short sequence. This was
demonstrated with model L, which yielded the best preliminary tests re-
sults amongst all MDRNN models

92 CHAPTER 5. EXPERIMENTS

Hence, model L was trained similar to model I with 20,000 good and
random policy rollouts, a latent vector size of 64 and 512 hidden units.
The main difference was the increased sequence length of 500 instead of a
sequence length of 64, which was the default in the PyTorch implementa-
tion we used. The increase in sequence length proved to yield astounding
planning results. Both RMHC and REAH managed to complete all tests
with minor errors. Recall, the minimum completion test reward was 205.
With model L, the average test reward for RHEA was 273, which is a
47% increase in performance compared to model C and a 35% increase
compared to model F. RMHC got an average test reward of 223, which is
a 38% increase in performance compared to model C and model F. Thus,
model L was the best performing MDRNN model amongst all the other
models trained (A-N). The increase in sequence length seemed to help
the MDRRN capture the temporal dependencies of the state transitions
and reward signal, thereby explaing the significant increase in planning
performance.

Model M - Random Trained MDRNN Based on all the previous
findings, model M was trained with all the same parameters as the best
performing model L but purely random policy rollouts only.

The preliminary results yielded poor results compared to all other models,
which used a combination of random and good policy rollouts. However,
the new MDRNN parameters did yield better results when comparing to
the model A that was also trained on random rollouts as shown on figure
5.10. This might be due to insufficient exploration of the environment.

Figure 5.10: Histogram of model A, M, L: total average preliminary plan-
ning test reward. Despite using the MDRNN parameters based on the
best model L, model M yielded poor results when trained on random roll-
outs compared to models trained with combined policy rollouts. However,
model M still performed better than model A, which was also trained on
random rollouts

5.1. PRELIMINARY PLANNING EXPERIMENTS 93

Model Selection for tuning and benchmarking

Model A B C D E F G H I J K L M N
RHEA Total Reward 53 120 148 152 81 175 170 178 206 181 149 273 104 43
RMHC Total Reward 91 135 137 70 23 140 138 142 180 146 140 230 127 76

Table 5.2: Complete preliminary planning test results for each world
model and planning algorithm (RHEA and RMHC). The table shows the
total average accumulated reward across the test cases executed (forward
drive, left turn, right turn, u-turn, s-turn). Models with 205 reward or
more passed the test cases. Great improvements were seen when com-
bining random and good policy rollouts (model C), increasing the latent
dimensions and number of hidden units (model I) and increasing the se-
quence length from 64 to 500 (model L).

Based on all preliminary findings and test results in table 5.2, model F, L
and M were selected for full parameter tuning and further benchmarking
to see how well they would perform as forward models once optimized.
model F was selected due to the good preliminary test results, despite
it using a less complex MDRNN. model L was selected due to its top
performance. Finally, model M was selected, despite its poor performance,
since it was interesting to see how well a model trained solely on rollouts
from a random policy would perform against a model that had access to
rollouts that sufficiently explore the environment. The results are shown
in figure 5.11.

Figure 5.11: Histogram of average total preliminary test reward across
model F, L and M. These are the models used later in the benchmark
experiments. F was selected due to good preliminary tests results, despite
having a less complex model. Model L was selected due to best test results.
Model M was selected to test an MDRNN trained on random data only

94 CHAPTER 5. EXPERIMENTS

5.2 NTBEA Parameter Tuning

The preliminary tests were used to obtain a set of candidate models that
showed promising planning results. Using these models, this section dis-
cusses how the parameters of RHEA and RMHC planning agents are tuned
in an efficient way, since the number of parameter configurations is infea-
sible to exhaust. Please refer to appendix A.4.1 for a detailed explanation
of the parameters shown in table 5.3.

Parameter Search space

The parameter search space describes all configurable hyperparameters
used in our implementation of RHEA and RMHC as presented in table
5.3.

Parameter Values #Options
Horizon 5, 10, 15, 20 4
Generations 1, 5, 10, 15, 20 5
Shift buffer true, false 2
Fitness assignment Total 1
Mutation type uniform-1, uniform-All, uniform-subset 3
Population 1 (RMHC), 2, 4, 8, 16 5
(RHEA) Genetic operator crossover, mutation, crossover+mutation 3
(RHEA) Selection type uniform, tournament, rank, roulette 4
(RHEA) Crossover type uniform, 1-point, 2-point 3

Table 5.3: Parameter search space for RMHC and RHEA. Note that last 4
parameter types are only applicable for RHEA while the rest is applicable
for both RHEA and RMHC.

Tuning Setup

This section describes the final setup for tuning RHEA and RMHC with
NTBEA.

We run NTBEA with the following parameters for each selected world
model (F, L, M) for both the RMHC and RHEA planning agent:

• Evaluations: 100

• Mutation probability: 0.5

• k-factor (explore factor): 2.0

• n neighbours: 50

Compared to the number evaluations used in the paper (Gaina, Devlin,
et al. 2020), the authors ran NTBEA on RHEA for 1500. We only perform
100 evaluations due to the time it takes for a single evaluation to complete.

5.2. NTBEA PARAMETER TUNING 95

When exploring configurations with large horizons, generations and popu-
lation sizes (RHEA), an evaluation takes a couple of minutes to complete.
We estimated that it takes approximately 3 hours to complete 100 eval-
uations for one world model on our local desktop. Hence, running 1500
iterations would take 2 days to complete, which sums up to 12 days when
done for all models, which was not feasible given the time frame of the
thesis. Arguably, the smaller number of evaluations reduces the likelihood
of NTBEA converging to an optimal parameter configuration. However,
according to the authors, it is still possible for NTBEA to converge in
under 100 evaluations for some games. Thus, we found that 100 might be
the bare minimum number of evaluations, although this should be verified.

Moreover, we do not run evaluations on full random tracks due to the
immense time it takes for an agent to complete a single game when doing
online planning (e.g. 15 min assuming each step takes 1 second in 900
steps). Instead, we reuse test cases from preliminary planning tests that
expose the agent to scenarios of driving forward, left turns, right turns,
u-turns and s-turns. Each case is executed in parallel and the final reward
is the total sum of rewards achieved across the different test cases. This
method may not provide the actual performance of a given parameter
configuration. However, the test cases help reveal how well the agent is
able to drive under a variety of scenarios, based on different segments of
the track without taking too much time. Thus, the fitness returned per
evaluation may be a simple approximation of how well each parameter
configuration performs, which might be sufficient.

Tuned Configurations

Parameter F L M
Horizon 10 10 5
Generations 20 15 15
Genetic operator mutation crossover + mutation mutation
Shift buffer false false false
Mutation type all-uniform subset-mutation single-uniform
Population 16 8 16
Selection type uniform tournament roulette
Crossover type N/A 1 point N/A

Table 5.4: Tuned Parameters for RHEA with NTBEA

Parameter F L M
Horizon 5 20 5
Generations 20 15 15
Shift Buffer false false false
Mutation Type subset mutation subset mutation subset mutation

Table 5.5: Tuned Parameters for RMHC with NTBEA

Final parameters for each world model is presented in table 5.5 for RMHC
and in table 5.4 for RHEA.

96 CHAPTER 5. EXPERIMENTS

By observing the horizon parameter of RMHC and RHEA, it seems that
both algorithms prefer to use a somewhat small horizon between 5 and 10
across all world models. A possible explanation would be that a smaller
horizon allows the agent to exploit near-future trajectories that are more
certain than exploiting a long uncertain horizon. Moreover, both RMHC
and RHEA prefer to use a large number of generations (15-20). This makes
sense, since it allows the agent to spend more time planning by refining
its planning trajectories in the local policy subspace, thus increasing the
likelihood of finding a good planning trajectory.

Surprisingly, both RHEA and RMHC prefer not to use shift buffer, which
we initially assumed to be opposite. Shift buffer allows the agent to retain
information gained from previous planning steps. However, it seems that
the agents prefer to start from scratch at each planning step. A possible
explanation is that previous planning steps may yield sub-optimal tra-
jectories, which are propagated forward into future planning trajectories
when using shift buffer, since it retains past plans. Thus, this may result
in the agent getting stuck in the same sub-optimal trajectory space dur-
ing the next planning step. By disabling shift buffer, all individuals are
randomly initialized at each planning step, which may allow the agent to
start at a different location in the trajectory space.

Another interesting finding is the choice of genetic operator in RHEA.
Both model F and M only preferred mutation, whereas model L prefers
crossover and mutation. Our initial expectation was that all models pre-
ferred crossover and mutation, since it may provide a more diverse popu-
lation than just using either mutation or crossover alone. However, only
using the mutation operator to encourage diversity may be sufficient for
the agent in model F and M.

Finally, all models preferred uniform subset-mutation as a mutation op-
erator for RMHC. uniform subset-mutation mutates a random subset of
actions. This choice of mutation operator makes sense, since RMHC only
has one individual mutated for each generation. Thus, RMHC prefers to
evaluate mutated individuals that differ a lot from the current elite trajec-
tory to increase exploration and promote diversity in the policy subspace,
which increasing the likelihood of finding a promising trajectory, while
avoiding getting stuck in a sub-optimal space.

Compared to RHEA, each model differs with its final choice of mutation
operator, which is most likely because of the increased number of genetic
operators at disposal and the diversity derived from using a population.

5.3. PLANNING BENCHMARKS 97

5.3 Planning Benchmarks

This section presents a final set of experiments conducted, in which the
selected models F (least complex), L (best in preliminary tests) and M
(trained on random policy) are benchmarked with RMHC and RHEA,
based on different models and choices of NTBEA tuned parameter con-
figurations.

Speed capping - Pre-Condition for all benchmarks

It was necessary to cap the maximum gas (acceleration) that can be sam-
pled in our action vector from 1 to 0.3 across all benchmarks. Based on
initial benchmark runs, the agents tended to prefer high gas values, which
at first seems very good (i.e. driving fast is better). However, the agents
would not brake when reaching a corner, which led to the car starting to
drift and lose control, ultimately ending up in the grass due to sustain-
ing a too high speed. A possible explanation is that the model is unable
to capture the dynamics of the environment. Namely, we have not used
any rollouts with an agent that drives sufficiently fast while reaching the
grass and starting to drift so this physical phenomena is not captured
by our MDRNN dynamics model. Consequently, when the agent plans a
trajectory in the world model, the agent would believe that driving into
a corner with high speed would not result in getting out of control, as
shown in figure 5.12. Arguably, setting a cap on the speed may bias the
experiments in favor of the agent but, not doing so, might prevent us from
measuring the agent’s planning ability when given a suboptimal dynamics
model that does not capture this aspect of the physical laws that govern
the real environment.

Figure 5.12: Agent (model L, RHEA) not braking at corner despite high
velocity end up in grass (uncapped gas). The top row shows the actual
driving in the real environment and the bottom shows the planned tra-
jectory in the simulated environment. The car is still on the road within
the model despite the high velocity. This points to the assumption that
the model has not captured this dynamic

98 CHAPTER 5. EXPERIMENTS

5.3.1 Tuned vs Preliminary Parameters

The first benchmark compares how well each agent (planning algorithm
and world model) performs on a full track with the tuned planning pa-
rameters against the preliminary planning parameters. Each agent is run
10 times on a simple unchanged track and 10 times on random tracks.

5.3.2 Model F - Least Complex Model

Based on the results in figure 5.13, it is evident that the tuned param-
eters improved the planning performance for both RHEA and RMHC
when driving on the simple track versus the preliminary parameters. The
average reward for RHEA was increased by 13% when using the tuned
parameters, whereas RMHC’s average reward was increased by 40%.

However, when model F was deployed on random tracks, the preliminary
parameters performed slightly better for both RHEA and RMHC. Using
the tuned parameters, RMHC saw a slight decrease in average reward
by 5%, while RHEA saw a decrease in average reward by 15%. Due to
the nature of random tracks, it is difficult to control how the tracks are
generated. Thus, the slight decrease in performance with tuned parame-
ters may be due to generated tracks being somewhat more complex when
tested with tuned parameters than during the preliminary parameters.
However, when they are both deployed on the same simple track, it is
clear that the tuned parameters improve the performance of RHEA and
RMHC.

Figure 5.13: Model F histogram of tuned vs preliminary parameters. The
error bars show the variance. The tuned parameters increased the perfor-
mance of RHEA and RMHC when deployed on a simple track but saw a
slight decrease when deployed on random tracks

5.3. PLANNING BENCHMARKS 99

When we observe the general performance of model F, RMHC was per-
forming much worse than RHEA. We noted that RMHC had trouble ex-
ploring the trajectory space when the car was about to end up in grass.
This is likely due RMHC getting stuck in a local optima trajectory space
and failing to sufficiently correct its trajectory towards the road when it
is at the edge of the road as shown on figure 5.14. Once the car was in
the grass, the agent seemed to stay on the path and was unable to get
back on the road, as it could not escape the local policy subspace in the
simulated environment.

Figure 5.14: RMHC Car Trajectory with model F. Note that the car fails
to correct the trajectory when it is about to drive into the grass. This is
likely due to RMHC getting stuck in a local optima policy subspace

When using RHEA, the car was somewhat able to drive around the track
and get around 300-400 in total reward out of 900. However, the agent
usually failed when reaching complex parts of the track and ended up
in the grass. Since the MDRNN is less complex (i.e., only 256 hidden
units instead of 512) and only uses a short sequence of 64 (instead of
500) when trained, it may have trouble representing complex dynamics of
the game. A long sequence length was shown to help the model capture
long term temporal dependencies. Thus, when the agent plans within the
simulated environment, it may have trouble representing and completing
a trajectory that succesfully transfers back to the real environment.

The reason why model F yielded promising results in the preliminary tests
cases may be due to the simplistic representation of the car racing game.
The agent was only required to drive for short amount of steps to complete
a given test, such as completing a left turn, which reduced the likelihood
of driving poorly. The test cases only serve as an evaluation of agent
driving behavior on simple hand-picked parts of the game tracks and it
may be possible for an agent to get an excellent performance. However,
when the agent is finally deployed on real tracks, the agent’s weaknesses
are made clear, despite it doing well in the predefined tests - it seemingly
fails to generalize. model F may not complete whole tracks but it still
proves that it can drive significantly better using RHEA than a random
policy, despite its low complexity. However, the overall driving is far from
human-level driving.

100 CHAPTER 5. EXPERIMENTS

5.3.3 Model L - Best in Preliminary Tests

Based on the results in figure 5.15, the tuned parameters resulted in mas-
sive improvements in planning performance. The average reward of RHEA
was increased by 47% on simple tracks and 67% on random tracks com-
pared to preliminary parameters.

Figure 5.15: Model L Histogram: Tuned vs Preliminary Parameters. The
error bars show the variance. The tuned parameters significantly increased
the performance for RHEA and RMHC and the agent was sometimes able
to complete tracks using model L with RHEA

RMHC’s average reward was increased by 80% on random and simple
tracks. Despite the great improvements, its performance was still poor, as
it only got at most 234 in average reward when driving on random tracks.
The agent failed mostly when driving into complex parts of the game (e.g.
corners). Again, this is likely due to RMHC getting stuck in local optima
policy subspaces and hence failing to escape a poor trajectory. RHEA
performed remarkably well with an average reward of 695 out of 900 and
managed to get a maximum score of 827. The agent was, at times, able
to complete whole tracks if the population was initialized from a good
starting point in the local policy subspace and the car was well positioned
on the road throughout the game (i.e., not driving into the corner with
bad initial trajectory), which is demonstrated in figure 5.16.

However, we still saw occasions where the agent would lose control when
entering turns due to the high speeds it attains or when it ends up taking a
bad turn and is unable to escape back onto the track. model L is far from
a perfect world model and it does not reach human-level performance, nor
does it par with the learned controller agent showcased in the world models
paper. Regardless, the general performance of model L is promising and
points towards evidence that it is possible to use RHEA for online planning
on a learned forward model.

5.3. PLANNING BENCHMARKS 101

Figure 5.16: RHEA with model L completing left turn with shown tra-
jectories. The best trajectory is marked with red.

5.3.4 Model M - Random Rollouts Only

Based on the results in figure 5.17, the tuned parameters did not seem
to improve the planning performance when using model M. Surprisingly,
using the tuned RHEA parameters saw a decrease in average reward of
30% on the simple track but a slight 18% increase on random tracks.
RMHC did not see any performance gains with the tuned parameters.

Figure 5.17: Model M Histogram: Tuned vs Preliminary Parameters.
The error bars show the variance. The tuned parameters increased the
performance but the model still failed as a forward model

Arguably, the two main reasons that help explain the abysmal perfor-
mance of model M are the use of random rollouts only and the limited
number of NTBEA iterations. The authors from (Simon M Lucas, Liu,
and Perez-Liebana 2018) ran 1500 iterations when tuning and they men-
tioned that some games required the full iteration budget to converge to
an optimal parameter configuration despite some games converging below
100 iterations.

102 CHAPTER 5. EXPERIMENTS

Firstly, since we only run NTBEA for 100 iterations, the algorithm may
not have converged to a somewhat optimal parameter configuration for
model M. Thus, we are unable to see any significant performance gains
with the tuned parameters. Hence, it would be interesting to see whether
the parameter configurations suggested by NTBEA change for model M
if run ran it with 1500 iterations. The second explanation relates back to
the random rollouts used for training. As mentioned in the preliminary
experiments section, the random policy only exposes the world model to
random driving. Thus, good driving behavior might be underrepresented,
making it hard for the MDRNN to produce an accurate reward signal
required for planning. This limits the overall planning capacity of the
model, despite tuning the planning parameters. If the model only repre-
sents the dynamics and reward signal from random driving, then it may
only be able to produce reward predictions accordingly. The connection
was somewhat clear when the agent decided to drive into the grass, de-
spite driving on a straight road, as shown in figure 5.18. This was the
exact same behavior observed when the rollouts were generated using a
random policy where the car would suddenly turn straight into the grass.
While doing so, the car was still able to collect tiles. Hence, a positive
reward is obtained before ending in the grass. Thus, the positive reward
may be associated with inappropriate actions such as turning hard left
when there are no turns on the track.

Figure 5.18: Using model M, we saw the agent having sudden urges to
drive into the grass despite, driving on a straight road. There is a clear
connection to how well the agent performs versus the rollouts used for
training. Random rollouts may limit the planning capacity of a model
and its ability to approximate real rewards

One way to improve model M may be to train the MDRNN with random
rollouts and then use an iterative training procedure with the planning
algorithm. Thus, the agent continuously drives and stores rollouts and
use those rollouts to retrain the model. Assuming the agent can drive
slightly better than the random policy, it may help generate new rollouts
that improve the MDRNN and its ability to capture the environment
dynamics. Thus, the MDRNN may slowly improve its reward signals
from a gradually-improving planning agent.

5.3. PLANNING BENCHMARKS 103

Figure 5.19: Total Average Reward vs Reward MSE: There is a strong
correlation between the average total reward and the model’s ability to
predict the actual rewards. A smaller MSE yields a higher average reward
(model L) compared to a high MSE that results in abysmal performance
with model M

5.3.5 Total Reward vs Reward MSE

Based on the above planning results, it seems evident that model L is still
the best forward model for RMHC and RHEA.

There is a clear correlation on how well a model performs as a forward
model when comparing the mean squared error (MSE) of the models re-
ward predictions versus the actual rewards as shown in figure 5.19. model
L that performed the best also has the smallest MSE, whereas model M
that performed the worst has the highest MSE. This was partially used
to access the model quality based on how well it predicts the actual re-
wards. This is crucial for planning, as the predicted rewards are used by
the agents to determine the planned trajectories, which are transferred
back to the real environment. Poor rewards prediction may lead to poor
reward signals and incorrect rank orders that result in poor planning as
shown with model M.

5.3.6 Different Horizons - L and M

This section investigates how the agent performs with different horizons.
Recall that the horizon defines how far an agent plans. We ran this
experiment with model L and model M for RHEA and RMHC 10 times
on random tracks. The results are shown in figure 5.20 where the top
graph shows the average reward with different horizons for model L and
the bottom figures shows it for model M.

It seems evident that model L with RHEA performs best with a horizon of

104 CHAPTER 5. EXPERIMENTS

Figure 5.20: Histogram of average reward vs horizons for model M and L.
Both models prefer a horizon between 10 and 20. A high horizon produce
very uncertain trajectories due to noisy rewards and a small horizon does
not sufficiently capture the direction of the car. Thus, we need to find a
sweet spot that allows the agent to look far ahead, while being confident
about the planned trajectory

10, whereas RMHC has a sweet spot between 10 and 20. Similarly, model
M prefers a horizon of 5 with RHEA and between 5 and 10 in RMHC.
Unfortunately, adjusting this horizon did not seem to improve the agent’s
planning performance, which is likely due to the limited planning capacity
of model M as mentioned in the previous section.

Both models prefer a somewhat small horizon, which makes sense because
using large horizons (e.g., 50) may result in very uncertain trajectories.
The model only approximates how the future may unfold to a certain
extent. Hence, unfolding far into the future may provide noisy rewards
due to uncertainty, which we currently do not capture, since we only model
the average reward signal. Using a small horizon (e.g., 2) would exploit a
more certain near-future and thus produce less noisy rewards. Yet, a small
horizon does not bring much information about whether the trajectory is
on a good or bad path. This is similar to having an agent trying to plan
as far as the car’s tip. Consequently, the short-sighted agent may not be
able to act in time before driving into grass.

Hence, we need to find a sweet spot where the agent can look far enough
into the future, while still being confident that the trajectory is likely to
occur. For model M and L, it is between 10-20 but this is not a fixed
value, as other models may support larger horizons.

5.3. PLANNING BENCHMARKS 105

5.3.7 Model L Parameters in Model M

This section investigates whether it is possible to improve the poor plan-
ning performance of model M by using the tuned planning parameters in
model L with model M. A hypothesis is that NTBEA may not have con-
verged to an optimal parameter configuration for model M. Thus, using
the best parameters in the best performing model may be closer to an
optimal parameter configuration and improves model M’s performance.

Figure 5.21: The histogram compares the average reward achieved with
model M by using tuned planning parameters from model L for RMHC
and RHEA. The error bars show the variance. Using the parameters from
model L significantly decreased the average reward for model M

Based on the results in figure 5.21, using the planning parameters from
model L on model M severely decreased the performance of model M.
The average reward of RHEA was decreased by 53% and 69% for RMHC.
Unsurprisingly, the tuned planning parameters for model M were expected
to perform better, as they were tuned explicitly for model M. Using a
parameter configuration tuned for another model that performs better,
may not be a silver bullet that can drastically improve the model.

106 CHAPTER 5. EXPERIMENTS

5.3.8 Shift Buffer - L and M

Recall that NTBEA prefers to disable shift buffer in all tuned models.
We investigate the effect of enabling shift buffer and compare the results
with model M and L that use tuned parameters. The experiments are
run 10 times on random tracks for both world models and planning algo-
rithms. The results are presented in figure 5.22 that shows the average
reward when enabling or disabling shift buffer. The top graph shows the
comparison for model M and the bottom graph shows the comparison for
model L. It seems that enabling shift buffer reduces the performance of
the planning algorithms for both model M and L. The performance drop
is most significant when using RHEA compared to RMHC. When shift
buffer is enabled with RHEA, the average reward is decreased by 30% for
model M and 61% for model L. This reduced planning performance may
help indicate why NTBEA preferred to disable shift buffer for all agents.
Finally, the results may confirm our hypothesis that disabling shift buffer
allows the agent to start at sufficiently random locations in the policy
subspace. Thus, it avoids getting stuck in a sub-optimal space due to
previously retained trajectories and increases the likelihood of finding a
somewhat optimal trajectory.

Figure 5.22: Histograms that compare average rewards with shift buffer
enabled and disabled for RMHC and RHEA. Top figure shows comparison
with model M and bottom figure shows comparison with model L where
error bars denote variance. Disabling shift buffer yields a higher average
reward than enabling it

5.3. PLANNING BENCHMARKS 107

Recent work in (Gaina, Devlin, et al. 2020) showed a preference towards
enabling shift buffer in 17 out of 19 games. However, all these games are
grid-based with discrete action spaces and is significantly less complex
than the car racing game that has an infinitely large continuous action
space. Thus, the agent may find it easier to plan in a discrete grid-
based game, as the trajectory space is significantly smaller, which enables
exploitations of past plans using shift buffer without the need to encourage
more diversity to escape bad policies.

The car racing policy search space introduces a huge trajectory search
landscape with local optimas. Consequently, if the agent always starts
from the same local optima due to shift buffer, it will most likely stay in
the same space of plans given the population is unable to explore other
policy regions through sufficiently upheld diversity. However, this is not
a certain conclusion, since the above only applies to the car racing game
that is represented in a model where parts of the landscape may be non-
representative or uncertain. Thus, it would be interesting to see whether
enabling shift buffer would result in poor planning when using a perfect
model of the game.

5.3.9 Summary

Based on the above experiments, we found that using an effective tuning
approach, such as NTBEA, to tune the planning parameter configurations
helped sufficiently improve the planning abilities of the agents to complete
whole tracks. This was shown with model L using 512 hidden units, a
sequence length of 500 and a latent size of 64 trained on a combination of
20,000 good and random rollouts.

Moreover, a simpler model F with 256 hidden units was trained on a
combination of 10,000 good and random rollouts and achieved excellent
preliminary test results but demonstrated mediocre driving skills. This
makes sense, since the preliminary tests only represented a tiny segment
of real tracks, which may not fully expose the weakness of a given agent’s
driving behavior.

Model M, which was trained with random rollouts only, failed drastically
as a forward model, despite tuning the planning parameters, playing with
different horizons and shift buffer settings. This is likely due to the ca-
pacity of the dynamics model being limited by the random policy, which
insufficiently explores the environment, as argued with model A in the
preliminary experiments.

Moreover, the MSE of rewards proved to give a reasonable quality estimate
of the models. This was indicated to be true, since model L that performed
the best had the smallest MSE, while model M, which performed the
worst, had the highest MSE.

108 CHAPTER 5. EXPERIMENTS

Further, the horizon benchmark showed that the models prefer to use a
small horizon between 10 and 20. Horizons beyond this yielded poor plan-
ning trajectories due to the compounding errors from consecutive reward
predictions. In contrast, short horizons fail to provide enough informa-
tion on where the car is heading. Thus, a sweet spot is needed, such that
the agent may plan far enough into the future, while still being confident
about the planned trajectory.

Shift buffer showed promising results in the EA paper by (Gaina, De-
vlin, et al. 2020) but ended up significantly worsen our planning results.
Arguably, this was likely due to the agent getting stuck in the same sub-
optimal planning trajectory space from the previous trajectory retained
by shift buffer.

Comparing RHEA and RMHC, RHEA managed to achieve a much higher
average reward than RMHC. This makes sense, since RMHC only uses a
single individual and is more prone to getting stuck in a local policy sub-
space. In contrast, RHEA exploits a population and may better cope
with sub-optimal trajectory spaces than RMHC. Despite that, their over-
all planning performance is strictly dependent on the model’s ability to
capture the dynamics and rewards of the real environment and the plan-
ning parameters used.

A final comparison of the average reward when driving random tracks is
shown in figure 5.6. The figure includes all benchmarked models with
RHEA and other methods for comparison in the car racing game. It is
important to note that we only performed 10 trials across the models due
to time constraints, whereas the official game benchmark uses 100 trials.

Our best model L does not beat the model from the world model paper,
nor does it beat human-level play. However, it does achieve a relatively
high average reward and managed to beat traditional learned Deep RL
methods (A3C, DQN). The findings prove that there is much potential in
using RHEA for online planning on a learned forward model.

Method Average Score
Model M (Random policy rollouts) 64± 5
DQN 343± 18
Model F (random/good policy rollouts, 256 hidden) 364± 101
A3C (continous) 591± 45
A3C (discrete) 652± 10
Model L (random/good policy rollouts, 512 hidden) 695± 13(77%)
Risi world model 903± 72
Ha world model 906± 21(100%)

Table 5.6: Our RHEA agent is able to achieve an average score of 695±13
across 10 random trials compared to other methods with 100 trials. We do
not solve the task of +900 average score but are able to beat traditional
Deep RL methods (DQN, AC3) with an average score of 591-652 where
model L achieved an average score of 695

Chapter 6

Discussion

This section will critically assess and discuss some of the shortcomings of
our approach and experiments along with the lessons learned in our work.

109

110 CHAPTER 6. DISCUSSION

6.1 Model (MDRNN)

In this thesis, we have realized that a planning agent depends strongly on
access to a somewhat perfect world model. Namely, the model used by
the planning agent needs to model the reward so that the rank order is
respected. In our case, the modelled reward signal must be higher when
the agent drives fast on the road, than driving slowly or driving on the
grass. Thus, a planning agent needs access to a world model that has
been trained on representative observations from the environment. This
begs the question of how one may use an alternative rollout policy than
a random policy to sufficiently explore the real environment state-space.

Interestingly, the full world model in the original approach of World Mod-
els (Ha and Schmidhuber 2018a) uses the actual reward signals to train
their controller agent, which we find to be less puritan, since that means
they do not in fact train a fully learned model. Recall, in model-based
RL, a model is composed of an estimated transition dynamics function
and reward function. In our approach, we use a fully learned model by
extending the MDRNN transition function with a reward signal. However,
we realized that the original MDRNN does not work, since it is trained
on random rollouts only. Namely, evidence points to the fact that the
original MDRNN is able to predict future latent states when inspecting
the reconstructions but the reward rank order seems to be entirely off.

For this purpose, we relied on their pre-trained controller agent that ex-
hibits good driving behavior, as the policy used to generate additional
rollouts that sufficiently explore the environment state-space to learn a
good reward function. Thus, we are successfully able to respect the rank
order of rewards in the simulated environment when compared to rewards
in the real environment, which means our MDRNN facilitates online plan-
ning in latent space.

Another concern is that the MDRNN seems to struggle with predicting
multiple steps into the future, which may be improved using multi-step
predictions. The MDRNN is only evaluated for its ability to predict the
next latent state given the current latent state (i.e., single-step prediction
objective). Thus, we do not directly measure its ability to predict mul-
tiple steps into the future in our objective function, which may lead to
compounding future prediction errors during planning.

A learned lesson comes from PlaNet that suggests using both a stochastic
(e.g., a latent state) and a deterministic component (e.g., a recurrent
hidden state) in the dynamics model for successful planning. They argue
that purely stochastic transitions make it difficult for the transition model
to reliably remember information across multiple time steps. Thus, a
deterministic sequence of hidden vectors {ht}Tt=1 is used to allow the model
to access, not just the last state, but all previous states deterministically.
Arguably, our MDRNN has such a hidden state that summarizes the past,
but information that goes further back into the past may be forgotten as
it unrolls forward in time. Thus, we also assume the model to be non-

6.2. PLANNING (RHEA) 111

Markovian, since we predict zt+1 from zt and ht that we assume roughly
”summarizes” prior latent states z1, ..., zt−1 like in their non-Markovian
RSSM model. This assumption could influence the planning results in
our work when looking at Markovian alternatives to RNNs.

6.2 Planning (RHEA)

We found that both the RHEA and RMHC planning algorithms were
able to find policies in the continuous action space of the car racing en-
vironment that made our agent exhibit relatively good driving behav-
ior. However, both algorithms are subject to local optima, regardless of
whether we use a hill climb or evolutionary algorithm procedure to max-
imize the fitness obtained from different sequences of policies in the local
policy subspace. The hill climb procedure was especially prone to getting
stuck in a local maxima when trying to find a good policy. In contrast,
the evolutionary algorithm procedure was able to escape this by using a
population with multiple individuals scattered around the random policy
search space.

It was very noticeable that the RMHC planning agent depended strongly
on the initial seed of the first random plan generated. However, it was
able to drive pretty well when starting in a good subspace of policies
and was very efficient, since it only uses one individual that is mutated
and replaced repeatedly. On the other hand, the RHEA agent was able
to obtain more consistent scores with fewer deviations, since it is less
prone to getting stuck in a locally optimal policy subspace due to its
large population. For both of them, it proved very important to use a
mutation operator that encourages enough diversity to avoid premature
convergence. Finally, their performance greatly fluctuates, depending on
the choice of model used to do simulated planning, which stems well with
the fact that successful planning depends on access to a good model.

However, our world model does still not entirely capture the dynamics
of the environment. For example, we currently have to set a threshold
of 30-50% on the gas used by the planning agent. This is because both
planning agents exhibit a preference towards driving at such high speed
that they end up drifting at corners. Arguably, our world model has not
been trained on rollouts, in which the rollout policy triggers these kinds
of scenarios. Namely, the policy we use exhibits good driving behavior,
meaning it stays on the road and maintains a decent speed at corners.
Thus, our world model does not capture traits like the physics of the
environment. Arguably, this begs the question of how to obtain a better
exploration of the state space.

In terms of parameters, we realized that our agent is somewhat short-
sighted, since we maximally use a future horizon of 15 steps. According
to related work, short-sighted agents are typically an issue in most model-
based approaches. Dreamer suggests using a learned value network to
help approximate the value of future states beyond the horizon.

112 CHAPTER 6. DISCUSSION

Finally, it was a revelatory experience that our NTBEA parameter tuning
showed it was worse to use shift buffer in our planning agents. Normally,
this is highly advocated in most RHEA papers but they mainly focus on
grid-based games, which use discrete action spaces. Arguably, we rely
on as much diversity as possible in our trajectories to help escape bad
planning policies in the infinitely large continuous action space of the car
racing environment. Thus, by using shift buffer, the agent may get stuck
in the sub-optimal planning trajectory space from the previous trajectory
retained by shift buffer.

6.3 Challenges

We struggled a lot with training our MDRNN, which experienced neg-
ative loss values during training of the GMM output that predicts the
distribution of future latent states as a Gaussian mixture. Namely, we
had issues with likelihood probabilities underflowing and loss values going
towards negative infinity due to the presence of singularities. Thus, we
had to carefully reset any mixtures of the distribution that collapsed to-
wards infinite values with a small variance. Further, we had to employ a
mathematical ”logsumexp” trick to keep the Gaussian mixture values from
underflowing. These analytical objective functions proved to be very hard
to work with when doing gradient-based optimization of the negative log-
likelihood function. We spent a significant amount of time troubleshooting
the loss of our Gaussian mixture model output, which might have been
avoided if we had used a gradient-free evolutionary training procedure.

Secondly, we spent a lot of time tuning the complexity of the MDRNN
model and using different rollout training data sets to obtain a model
that respects the rank order of real rewards to do successful planning.
Arguably, we rely on a good reward signal in the simulated environment
when doing online planning, as opposed to learning approaches that of-
ten seem to use the real reward signal directly when training a policy
network. The default MDRNN model was by no means able to predict fu-
ture rewards very well. This makes sense, since the original work in World
Models focused mainly on the model’s ability to make good predictions of
the next latent state.

However, it is crucial to learn a good reward signal when doing online
planning and this is arguably more important than learning to predict
good future latent states and make accurate reconstructions from latent
space. This is why we use a good RL agent policy to obtain a repre-
sentative set of observations that sufficiently explores the dynamics and
rewards of the environment. Arguably, we could have avoided this and
saved a lot of time if we had just employed an iterative end-to-end training
approach where we mainly optimize the reward signal and keep improving
our model over time.

Chapter 7

Conclusion

We have successfully implemented a game AI agent that can complete
whole random tracks in the car racing environment using the Rolling
Horizon Evolutionary Algorithm (RHEA) for online planning on a learned
model. Thus, we have answered our research question, although several
challenges beg for future work. Mainly, we do not consistently solve the
continuous control task in the car racing environment of obtaining an
average score of 900 across 100 random trials and we rely on access to a
representative data set of rollouts generated by a pre-trained RL agent.

A model-based Reinforcement Learning approach is adopted that enables
planning. A ConvVAE is used to compress observations into a lower-
dimensional latent space. The compressed latent space representation is
used to efficiently learn an MDRNN model of the environment dynamics
and rewards to enable planning. The model uses a gradient-based training
procedure, which requires a rollout exploration policy that sufficiently
explores the environment state space. The MDRNN captures long term
temporal dependencies using an LSTM and uses an MDN to predict the
future as a stochastic Gaussian mixture model distribution over latent
states along with the expected reward signal.

The size of the latent vector was increased from 32 to 64 so the MDRNN
dynamics model has sufficient information to predict future latent states.
Further, the complexity of the MDRNN was increased from 256 to 512
hidden units so that it better captures the rewards and their rank order in
the real environment. Also, the sequence length of rollouts used to train
the MDRNN was increased from 64 to 500 so that it better captures the
long term temporal dependencies of the environment.

To do planning in latent space, we use a simulated environment that
synchronizes the MDRNN hidden state with the real environment and
supports rolling back to previous hidden states when simulating planning
trajectories. We do evolutionary plan-space planning by using RHEA to
search through a random subspace of continuous plans in the simulated
environment. Each individual has its copy of the hidden and latent states
to enable parallel simulation and rollback of planning trajectories.

113

114 CHAPTER 7. CONCLUSION

A custom sampling procedure was implemented to avoid simultaneous
acceleration and braking, as this was not taken into account in the original
environment. A gas threshold of 0.3 down from 1.0 was enforced to avoid
the planning agents from driving too fast and losing control, since our
dynamics model does not currently capture such driving behaviour.

Our best planning agent uses a population of 8, horizon of 10, 15 genera-
tions, 1-bit crossover, tournament-based parent selection, uniform subset
mutation and total simulated reward as fitness. NTBEA parameter tuning
is used to efficiently find this parameter configuration. RHEA performs
better than RMHC, which is most likely due to RMHC getting stuck in a
local optima of the policy subspace. In contrast, RHEA uses a population
to encourage more diversity across the policy subspace and avoid prema-
ture convergence. A random subset of uniformly selected actions is used
as mutation operator to ensure sufficient diversity, which is required to
avoid individuals from getting stuck in a locally optimal policy subspace.

To the best of our knowledge, this work is novel, since we show how
to do efficient online planning using an evolutionary planning algorithm
(RHEA) for policy search with a learned dynamics model (MDRNN) in
latent space (VAE), which has not been done before. Ultimately, we show
that it is possible to do planning with evolution and beat traditional Deep
RL methods (A3C, DQN) when given a world model based on sufficient
exploration of the environment dynamics. However, new approaches are
needed to solve the car racing task, which is described in the next section.

7.1. FUTURE WORK 115

7.1 Future work

This section explores possible extensions recommended in future work.
Firstly, a good rollout exploration policy is required to sufficiently ex-
plore the environment state-space when training a dynamics model using
gradient-based methods. Secondly, a multistep-prediction objective may
be used in the MDRNN to see if this improves the accuracy of multi-
ple consecutive predictions into the future of the latent space, similar to
PlaNet. Also, the MDRNN struggles with predicting far into the horizon,
resulting in a short-sighted agent, which might be addressed by using a
learned value network like in Dreamer to look beyond the future horizon.

Thirdly, an end-to-end training approach, similar to MuZero, should help
learn only what is relevant to planning, such as the reward signal. In
extension to this, it would be interesting to explore a gradient-free evolu-
tionary training procedure like neuroevolution, since this would avoid the
need for a fixed training set of representative rollouts. Another benefit
is that it works in discrete domains and does not assume the objective is
continuous and smooth like gradient-based methods. Finally, this avoids
having to deal with complex, analytical objective functions derived by
Maximum Likelihood estimation. It might also be interesting to add a
deviation to the reward signal and use this model uncertainty to guide
agent behavior and dynamically decide on a planning horizon.

A simple improvement in our approach would be to do more extensive pa-
rameter tuning of both our model and planning agent. Namely, we have
not spent much time playing with the number of mixtures used in our dy-
namics model. Further, we used a fixed temperature parameter to control
the stochasticity of the simulated environment, which proved important
to making stable future latent predictions but also affects the reward. In
terms of planning, NTBEA tuning was only run for 100 iterations but the
original paper uses 1500 iterations, so it might be interesting to run more
iterations of tuning the planning agents on better hardware. Moreover,
alternative fitness functions and evolution strategies may be explored like
self-adaption of parameters where the horizon, macro action and mutation
probability are included in individuals and co-evolved dynamically with
their planned action solutions (Eiben and Smith 2015, p. 101).

Finally and most importantly, future work would be to learn the reward
signal in the MDRNN, starting from random rollouts only, instead of also
relying on a good RL policy to generate the initial training rollouts. Ar-
guably, we may obtain similar results by using an iterative trainer that
initializes a random world model and does RHEA planning on it to gen-
erate new rollouts. The generated planning rollouts could then be used to
retrain an improved world model iteratively, until the task of getting an
average score of 900 across 100 random trials is completed. Ultimately,
we strongly believe that such an iterative end-to-end training approach on
a simpler domain may help reveal that online evolutionary planning in
latent space is possible without assuming access to a representative data
set, while also solving the continuous car racing control task.

Appendix A

Appendix

A.1 Background

A.1.1 Model-based RL and Planning Summary

In model-based RL we strive to learn a model of the environment repre-
sented by a the transition dynamics function T (st, at, st+1) = P (st+1|st, at))
and a reward function R(st, at, st+1) = E[Rt+1|St = st, At = at]. Plan-
ning is then using this model to decide a course of action (policy) for
interacting with the modeled environment by considering possible future
situations before they are actually experienced. This is either done using
state-space planning, where planning is a search through the state space
for an optimal policy or plan-space planning where planning is a search
through the space of plans for a plan that maximize expected return.

Model-free learning is similar to state-space planning in computing value
functions as a key step toward improving the policy and do so by updates
or backup operations to simulated experience. Traditionally, we use Dy-
namic programming or to search through the state space and generate up-
dated targets of our state’s estimated value: V (St)← Eπ(Rt+1 +γV (St+1)
(approximated by DNNs). However, the difference between model-free
learning and model-based planning methods is that the planning method
uses simulated experiences in the simulated environment (model) to esti-
mate the value function by backing-up update operations, whereas learn-
ing methods use real experience generated by the true environment.

The other way to do planning is to begin and complete the search for
a policy after encountering each new state st by outputting a single ac-
tion only and then repeat the planning for the next state st+1 to produce
action at+1, and so on. This is called decision time planning, where sim-
ulated experiences are used to select an action for the current state with
a limited decision time budget instead of gradually improving a policy or
value function through a learned approach. This ambiguous presence of
learning a policy in both the model-free and model-based planning ap-
proach may be confusing. That is, one may learn a policy directly from
real experiences (model-free) or use simulated experience in a model.

116

A.1. BACKGROUND 117

Planning may be done on the state-space by learning a policy from state-
values or in the planning-space by searching for a policy (e.g. MCTS or
RHEA).

A.1.2 Reinforcement Learning: Model-Free Approach

Model-free RL is used where we learn a policy directly from experience.
The MDP is typically solved using the Bellman equation, which recursively
describes the expected rewards. It is a dynamic programming equation
that decomposes a problem into smaller subproblems through its inherent
recursive structure with overlapping subproblems. It is used to describe
the optimal value of state and a q-state. The optimal value of a state
s, V ∗(s), is the maximum expected value of the future discounted reward
(return) that an optimally-acting agent starting from s will receive over its
lifetime where. The optimal value of a q-state (s, a), Q(s, a), (also known
as the q-value of an action-state), is the maximum expected value of the
future discounted reward an agent will receive after starting in s, having
taken action a, then acting optimally. Recall T (s, a, s′) = P (s′|s, a).

V ∗(s) = maxa
∑
s′

T (s, a, s′)[R(s, a, s′) + γV ∗(s′)] (A.1)

Q∗(s, a) = E[R(s, a, s′) + γmaxa′Q
∗(s′, a′)|s, a] (A.2)

=
∑
s′

T (s, a, s′)[R(s, a, s′) + γmaxa′Q
∗(s′, a′)] (A.3)

V ∗(s) = maxaQ
∗(s, a) (A.4)

Hence, if the environment is stochastic, the reward the agent can expect
to receive is an expectation, which is the average reward weighted by
the probability of future states conditioned on taking action a in state s.
Otherwise, in a deterministic environment T (s, a, s′) = 1 we just get a
sum of rewards.

Q-learning is a popular example of an active feedback-based model-free
RL algorithm that learns an optimal policy by watching the agent play
(e.g. randomly) and gradually improving its estimates of the above Q-
values computed from the Bellman equation that maximize the expected
future reward (cumulative, discounted) starting from the current state.
Thus, model-free learning attempts to estimate the q-values of states (how
good a state is based on the reward I expect to get) directly, without any
memory to construct a model of the rewards and transitions in the MDP.
Q-learning solves the dynamic programming problem by iteratively updat-
ing the action q-values function using the Bellman equation to compute
Qt+1 for all states s in the current time step t in the environment. Q-
learning will acquire q-value samples R(s, a, s′) + γmaxa′Q(s′, a′) during
agent play and do value iteration updates, using the weighted average of
the old value and new learned value in equation A.5.

118 APPENDIX A. APPENDIX

sample = R(s, a, s′) · γ ·Q(s′, a′)

Q(s, a)← (1− α)Q(s, a) + α · sample (A.5)

Assuming this procedure spends enough time exploring the state space
while decreasing the learning rate α appropriately, Q-learning will learn
the optimal q-values for every q-state even with suboptimal or random
actions (off-policy learning): Qt → Q∗ as t → ∞. However, this is done
for each episode of experiences (sequence of actions and states), which is
computationally intractable given a very large state space. Thus, a pop-
ular method is to use Approximate Q-learning by combining Q-learning
with a deep convolutional neural network that works as a nonlinear func-
tion approximator used to estimate q-values of any state-action pair (s,
a): Q∗(s, a) ≈ Q(s, a, θ), where θ is a vector of model parameters. This
is an example of Deep Q-Learning (DQN), which is how Deep Mind used
a Deep Neural Network (DNN) called a Deep-Q-Network (DQN) to esti-
mate Q-values. Hence, a learned function approximator may be used to
cope with a large state space by estimating the value of states and thereby
learn a good policy directly from raw video game pixels.

A.1.3 Planning: Monte Carlo Tree Search(MCTS)

Monte Carlo Tree Search is an example of an informed search method
that uses UCT as a heuristic for exploration and uses simulation-based
rollouts to estimate the states. Instead of computing or approximating
value function (V ∗(s) or Q∗(s, a), Monte Carlo methods estimate the ex-
pected return of a state by averaging the return across multiple rollouts
of a policy. Thus, this works in non-Markovian environments too, but
can only be used in episodic MDPs, since the rollouts have to terminate
to compute its return. The idea is to expand the current state and run
rullouts until a terminal is reached. Values are then filled in the search
tree by backpropagation of estimated values. Iteratively, you go back to
the root in the search tree of visited nodes and run a new simulation on
a new node using a default policy (e.g., random). Gradually, given the
knowledge in the current search tree, you start to guide the search to-
wards more promising nodes using a tree policy. Effectively, you end up
ignoring useless parts of the search tree while still exploring them enough
to be sure they are useless.

Alternatively, you could use other informed search algorithms but they
often rely on heuristics that are hard to capture in complex environments
(hard value function to learn). Instead, the novel idea is to use random
simulations to guide search to promising actions. This assumes that the
simulation policy is acting as a reasonable proxy for deeper search. This
should be the case, since the search tree is developed with rich information
further over time. In a way, the simulation policy is just acting as a heuris-
tic guiding search towards best parts in the search space. Eventually, the
random policy is replaced by knowledge in the tree.

A.1. BACKGROUND 119

Thus, any short-term bias should be removed asymptotically even when
using a random policy. The benefits of MCTS (Tree search with MC roll-
outs) is a highly selective best-first search (pick promising nodes). Also,
states are evaluated dynamically unlike in Dynamic Programming and
offline learning an approximation of the entire state space. Further, sam-
pling helps break the curse of dimensionality (search space increases expo-
nentially in the number of dimensions), since we do not have to consider
all the information in the environment. Also, simulations work even for
black box models, since they only require a model to do sampling. Fi-
nally, a procedure like MCTS is computationally efficient (parallelizable
rollouts) and anytime (query real-time).

Figure A.1: One iteration of general MCTS approach (Perez, S. Lucas,
et al. 2012)

The goal of MCTS is to approximate the (true) value of the actions that
may be taken from the current state, which is achieved by iteratively
building a partial search tree using the above procedure. Four steps are
used for each search iteration:

• Selection: a child selection policy is recursively applied from root
note to descent through the tree until a leaf node is reached. A node
is expandable if it is not a terminal state and has unvisited children

• Expansion: One (or more) child nodes are created to expand the
tree based on valid actions.

• Simulation: a simulation is run from the new node(s) according to
a default policy (random) until a terminal node is reached (play-
out/rollout).

• Backpropagation: The simulation result (e.g. total reward) is ”backed
up” through the selected nodes to update their statistics

Monte Carlo methods do sampling to approximate the Q-value of a state-
action pair, which is simply the expected reward of that action where
N(s, a) is the number of times action a has been selected from state s,
N(s) is the number of times a game has been played out through state s,
zi is the result of the ith simulation played out from s, and Ii(s, a) is 1 if
action a was selected from state s on the ith play-out from state s or 0.

120 APPENDIX A. APPENDIX

Q(s, a) =
1

N(s, a)

N∑
i=1

(s)Ii(s, a)zi (A.6)

The way the tree is built depends on how nodes in the tree are selected.
The success of MCTS is primarily due to its choice of tree policy used
to select and expand nodes that are more promising. The most popular
choice is the Upper Confidence Bound (UCB) heuristic as tree policy
that treats the choice of child node as a multi-armed bandit problem
where the value of a child node is the expected reward approximated
by the Monte Carlo simulations. It is used to address the exploration-
exploitation dilemma in MCTS by selecting child nodes that maximize
a combination of exploitation of high reward nodes and exploration of
less visited nodes. MCTS that uses UCB as tree policy is called MCTS
with Upper Confidence Bounds for Trees (UCT) where a child node j is
selected to maximize:

UCT = vj + C ×

√
lnn

nj
(A.7)

,

where vj is the estimated value of the node (exploitation term, e.g. Q(s, a))
and the 2nd term is used for exploration where nj is the number of times
the node has been visited, n is the total number of times that its par-
ent has been visited and C is a non-negative temperature hyperparameter
used to control the degree of exploration typically set to C =

√
2.

Normalized performance of GPUs

Figure A.2: Normalized Performance of GPUs and TPU in PyTorch 1.0.1
and CUDA 10. Higher is better. (Dettmers 2019)

A.2. RELATED WORK 121

A.2 Related Work

A.2.1 Shaping Belief States with Generative Envi-
ronment Models for RL

In Shaping Belief States with Generative Environment Models for RL
(Gregor et al. 2019), the authors investigate how agents form and main-
tain beliefs about aspects of the environment relevant to planning. They
propose a way to efficiently train expressive generative models in complex
3D environments to form stable belief-states. Previously, the stochastic
state-space models (latent dynamics) seen so far only cope with 2D envi-
ronments. Thus, this paper is a useful starting point for planning in more
realistic 3D environments. An example of this could be a simulated envi-
ronment for autonomous vehicle driving where self-driving cars have a 3D
view of their environment through the use of cameras or light-based radar
sensors (LIDAR). The authors show it is possible to capture the layout
of the environment and the position and orientation of the agent. Similar
to Learning Latent Dynamics for Planning from Pixels, they also mention
the importance of predicting multiple steps into the future overshooting
in combination with a generative model to obtain stable representations.
The authors hypothesize that ”an ideal unsupervised learning algorithm
should use past observations to create a stable representation of the en-
vironment”, which includes ”capturing the variation of the environment
in a temporally coherent way” (Gregor et al. 2019, p. 1). They formal-
ize the problem as a partially observable environment using a POMDP
to model scenarios where the agent cannot observe the world state fully.
A POMDP agent either acts to change the world state (as in MDP) or
to obtain new evidence sensed in the environment to update its belief
(probability) about being in the current world state. This approach to
planning relies on summarizing previous observations o1:t into a belief dis-
tribution bt(st) = p(st|o1:t) about the current unobserved hidden state st,
which means the belief distribution is a sufficient statistic of past obser-
vations: bt ≡ o1:t. Thus, in previous settings, we assumed access to the
environment state st, but here we replace st with bt to go from an MDP
to a ”belief MDP” (POMDP). We do not know the actual state but use
noisy observations to infer what state may be as a distribution. The be-
lief state captures the same information as past observations because it
is a distribution over states that condition on those same observations.
This provides a way to use all past observations in a tractable way since
a long sequence of observations with information is retained within the
current belief state. Intuitively, we can think of this as selecting actions
in a ”belief MDP”, which is like an MDP except st is replaced with bt.

The fundamental problem in building useful environment models is long-
term consistency. Namely, most models are unable to perform coherent
long-term predictions while performing accurate short-term predictions,
even in simple, partially observed environments. The authors argue that
this has nothing to do with the capacity of these models but instead is
due to failure in model conditioning and a weak objective.

122 APPENDIX A. APPENDIX

They propose a belief-state architecture based on the LSTM (RNN) aug-
mented with a Kanerva Memory model to remember a map of the world,
which is useful for representing the current belief of situations in realistic
driving environments. The Kanerva memory model is a Sparse Distributed
Memory (SDM) model of human long-term memory (Kanerva 1988). It is
a generalized random-access memory (RAM) that consists of a fixed table
of addresses A pointing to modifiable memory M , which supports fast
reads and writes, and the size/capacity of the SDM store is independent
of the input dimension. This is useful for model-free RL methods that
often employ a memory buffer of experiences to train a learned policy.

A simple way to form a belief state bt is to train a next-step prediction
model p(st+1|s1, . . . , st) = p(st+1|bt), where bt = RNN(bt−1, st, at) sum-
marizes the past and s denotes the state of the environment. This is
analogous to the World Models paper where we use a latent represen-
tation zt of the real states st (denoted xt in the original paper) and an
RNN with a hidden state ht to capture the past except an RNN is deter-
ministic so the hidden state of an RNN is equivalent to a deterministic
distribution over hidden states such that p(zt+1|z1:t) = p(zt+1|ht) where
ht = RNN(ht+1, zt, at). Unlike World Models, this paper relaxes the as-
sumption that the real states are observable and instead represent states
by a stochastic belief distribution over hidden states. Under an optimal so-
lution, it contains all information required to predict the future p(st+1:H |bt)
with horizon H, since any joint distribution can be factorized as a product
of conditionals: p(st+1, st+2, . . . , st+H |bt) = p(st+1|bt)×p(st+2|bt+1)× . . .×
p(st+H |bt+H) = f(st+1, bt)×. . .×f(st+H , bt+H), which is why most research
use next-step prediction in RL. The authors show that it is possible to
predict the immediate future st+1 with high accuracy as an almost deter-
ministic function of the immediate k past observations st−k:t. Intuitively,
this means p(st+1|st−k:t, at−k−1:t−1, bt−k) ≈ P (st+1|st−k:t, at−k−1:t−1) where
the immediate past weakens the need of the belief state. However, the au-
thors argue that predicting the distant future requires a better knowledge
of the environment dynamics, encouraging the need of belief-state with
such information. In this regard, overshooting (predicting multiple steps
ahead) seems to improve the ability to predict the long-term future.

The authors use a single-layer MLP to predict the discretized position
and orientation of the agent and a convolutional network to predict the
top-down view (map decoder). The belief state bt is learned by an LSTM
and is composed of the LSTM hidden state ht and the LSTM cell state
ct. This is used as the belief state to decode the map and find the current
location of the agent. The paper does not look into planning but focuses
mainly on the effect of model choices on the learned representations and
belief states. They use a fixed handcrafted policy that chooses random
locations for generating training data and a path planning policy to move
between locations used to analyze the model and belief state (so no RL).

A.3. APPROACH 123

Arguably, their approach is less relevant to this thesis, since they rely on
a very complicated architecture (Kanerva Sparse Distributed Memory)
to enable efficient model-free RL on learned 3D environment models and
they do not do any online planning as we wish to do in our 2D driving
environment. However, the paper serves as a good reminder for what
future work may be done using POMDPs to model realistic 3D driving
environments where the world is not fully observable and we only ob-
serve noisy sensor observations ot ∼ O(ot|st, at) as evidence to update our
current belief bt = P (st|o1:t−1, a1:t−1) about the world into a new belief
b(st+1) = P (st+1|ot, at, bt) ∝ O(ot, st+1, at)

∑
st
T (st+1|st, at)bt(st).

A.3 Approach

A.3.1 Generative Modelling

”Generative modelling” is an area of Machine Learning that deals with
models of distribution P (X) defined over data observations X in some
potentially large dimensional space d. In our case, states are represented
by high-dimensional images, for which we would like to find a compressed
representation that is more efficient to plan in using a forward (dynamics)
model on it. Thus, the job of our generative model is to somehow capture
the dependencies between pixels by assigning real images high probability
and images of random noise with low probability. Formally, our goal is
to learn a model Pθ which we can sample from, such that Pθ is as similar
as possible to P (X) where P (X) is the true distribution of examples X.
Training these kinds of models may be hard for an number of reasons.
Firstly, they might require strong assumptions about the structure of the
data. Second, they might make poor approximations, leading to poor
models. Third, they might rely on computationally intractable inference
procedures like Markov Chain Monte Carlo (MCMC). Today, a popular
alternative is training neural networks as powerful universal function ap-
proximators through backpropagation (see 2.5.1).

A.3.2 VAE as a Probabilistic Graphical Model (PGM)

Interestingly, a Variational Autoencoder (VAE) can be understood from
both a deep learning and graphical model perspective. So far, we have
described a variational autoencoder from a neural net perspective as a
generative model that consists of an encoder, a latent space and a decoder
as shown in figure A.3b. From a Bayesian perspective, this is originally
described with a probabilistic graphical model (PGM), which is a graph
of conditional probabilities (edges) between random variables (nodes) as
shown in figure A.3a.

Our goal is to find a model that is representative of our dataset X (in our
case states s). Formally, we wish to obtain a vector of latent variables z
in a high-dimensional space Z ∈ R64, which we can easily sample from
according to a probability density function (PDF) P (z) defined over Z.

124 APPENDIX A. APPENDIX

(a) VAE as a graphical model. Sam-
ple from z and X N times while model
parameters are fixed. (Doersch 2016)

(b) VAE as neural network. Encoder
compresses data X into latent Z and de-
coder reconstructs X from Z (Altosaar
2020)

Figure A.3: VAE as Graphical Model (left) and Neural Network (right)

Given a deterministic function f(z; θ) parameterized by a vector θ in a
deep neural network, we wish to optimize θ such that we can sample z
from P (z) and with high probability, f(z; θ) will be like the observations
in our dataset. Thus, we aim to maximize the probability of each X in
our training set under the generative process as follows:

P (X) =

∫
P (X|z; θ)P (z)dz (A.8)

Notice our function approximator f(z; θ) parameterized by θ as a DNN
has been replaced by a distribution P (x|z; θ) to show explicitly that X de-
pends on z using the total probability theorem. Ultimately, our goal is to
do Maximum Likelihood Estimation (MLE), which is finding the param-
eter values in θ that maximize the likelihood of making the observations
X given the parameters θ and latent z.

In VAEs, the choice of output distribution is often the continuous Gaus-
sian PDF like in our case: P (X|z; θ) = N(X|f(z; θ), σ2 · I) with mean
f(z; θ) and covariance equal to the identity matrix I times a scalar devia-
tion σ. By using a Gaussian distribution, we can use gradient descent to
increase P (X) by making f(z; θ) approach X for some z.

This corresponds to gradually making the training data more likely un-
der the generative model. The important assumption is that P (x|z) is
computable and continuous in the model parameters θ, since the gradi-
ent descent optimization procedure requires a function that is continuous
and smooth for gradients to exist as needed in backpropagation during
training.

To maximize Equation A.8, VAEs need to define how information is rep-
resented with latent variables z and how to deal with the integral over
z. Interestingly, the VAE assumes that samples of z can be drawn from
a simple normal distribution z ∼ N(0, I), where I is the identity matrix.
This is possible because any distribution in d dimensions can be generated
by taking a set of d variables that are normally distributed and mapping
them with a sufficiently complex function, which is made possible by deep
neural networks as universal function approximators.

A.3. APPROACH 125

That is why a deep neural network is used as a function approximator
f(z; θ) where normally distributed z′s are mapped to latent values, which
are ultimately useful for reconstructing the original image data. Interest-
ingly, we do not need to worry about whether such latent structure exists,
since the model will learn such structure if it helps accurately reproduce
(i.e., maximize likelihood of) the training data. Hence, we want to max-
imize the likelihood of generating our real training observations indexed
by i:

θ∗ML = argmaxθ pθ(X; θ) = argmaxθ

n∏
i=1

pθ(xi; θ) (A.9)

Maximizing the likelihood of our training data (generating real data sam-
ples) is equivalent to minimizing the log likelihood of our data as a loss
function with gradient descent.

Bayesian Inference

Looking at the VAE from a Bayesian perspective as a PGM (see A.3a),
we need to find p(z|x) where x represents observable data and z repre-
sents a hidden variable. This is a Bayesian inference problem where we
use Bayes theorem to update our beliefs upon observing the data. This
is done by computing a posterior belief p(z|x) based on a prior belief
p(z), likelihood of our data p(x|z) and observations (data) p(x), using
Bayes rule, the multiplication rule (numerator) and the marginalization
rule (denominator):

p(z|x) =
p(z, x)

p(x)
=

p(x|z) · p(z)∫
z
p(x|z) · p(z)dz

(A.10)

However, the problem is computing the marginal p(x), which is intractable,

since z ∈ Rd is higher dimensional so the integral will have a form

∫
· · ·

∫
︸ ︷︷ ︸
d times

Instead, we will approximate p(z|x) to find p(x):

p(x) =
p(x|z) · p(z)

p(z|x)
(A.11)

Approximate Inference

For this purpose, one may do approximate inference by either using Markov
Chain Monte Carlo (MCMC) sampling methods or Variational Inference
(VI) optimization methods to approximate the posterior p(z|x). Tradi-
tionally, MMCMC has been most widely used and is based on a stochastic
Markov chain model with random variable nodes and transition probabil-
ity edges subject to the Markov property. In MCMC, a Markov chain is
constructed on z whose stationary distribution (i.e. remains unchanged as
time progresses) is the posterior p(z|x). Sampling is performed from the
chain to collect samples from the stationary distribution. The posterior is
approximated with an empirical estimate constructed from the collected
samples (Blei, Kucukelbir, and McAuliffe 2018, p. 2).

126 APPENDIX A. APPENDIX

In short, MCMC uses sampling to approximate the posterior and is non-
parametric and asymptotically exact given enough time and an appropri-
ate sampling procedure but this is not feasible in practice given the finite
amount of time available and potentially large amount of data.

Variational Inference (VI)

Rather than use sampling, the main idea behind VI is to use optimization,
which is faster and easier to scale to large data at the potential cost of
a less accurate approximation. VI methods approximate the intractable
integral of the posterior p(Z|X) with a parameterized posterior approxi-
mation qθ(Z|X) that is close to a family of tractable densities such as the
Gaussian z ∼ N(0, I). Thus, VI finds a tractable approximate posterior
qθ(Z|X) by minimizing the KL divergence between a tractable distribution
q(Z) and the exact posterior P (Z|X). Formally, we wish to approximate
P (Z|X) with a tractable (e.g. Normal or Exponential) distribution q(Z)
by playing with the parameters of the distribution s.t. q(Z|X) ≈ P (Z|X).
Put simply, we avoid the intractable problem by using a parameterized
distribution that we know how to deal with and make it as similar as
possible to the original distribution.

How do we make q close to p?

In order to make our approximate posterior q(z|x) ≈ p(z|x), we will use
the Kullback-Leibler (KL) Divergence score, which quantifies how much
one probability distribution differs from another probability distribution.

This takes point of departure in information theory (entropy), which is
the level of information, surprise or uncertainty inherent in a random vari-
able’s possible outcomes. The premise is that the ”informational value” of
an event depends on the degree to which it is surprising. Namely, if there
is a high probability of something occuring (e.g. the sun rising tomorrow),
then there is little information because it is certain. On the other hand,
if there is a low probability of something happening (e.g. snow during
summer), then this event contains large information.

This is quantified with the Information equation I:

I(x) = −logp(x) (A.12)

In this regard, entropy denoted H measures the expected (average) amount
of information conveyed by knowing the outcome of a random event:

H(x) = E[I(x)] = −E[−logp(x)] = −
∑

p(x) · logp(x) (A.13)

A.3. APPROACH 127

Finally, the KL divergence KL(p||q) measures dissimilarity between two
different distributions p, q quantified almost by the difference in their en-
tropy except it is with respect to the first distribution p:

KL(p||q) =

= H(q)q∼p(x) −H(p)

= Eq∼p(x)[−logq(x)]− E[−logp(x)]

= −
∑

p(x) · log(q) +
∑

p(x) · logp(x)

=
∑

p(x) · (log(p(x)− logq(x))

=
∑

p(x) · logp(x)

q(x)

= E[log
p(x)

q(z)
]

= E[−log q(x)

p(x)
]

(A.14)

, where KL ≥ 0 and KL(p||q) 6= KL(q||p), meaning the KL measure is
antisymmetric or divergent and not a symmetric distance measure.

Now, in order to make our approximate posterior distribution q(z) close
to the true distribution p, we need to minimize their KL divergence with
respect to q:

minKL(q||p) (A.15)

Interestingly, we can decompose the KL divergence between the approxi-
mate posterior q(z) and the true posterior p(z|x) = p(x|z)·p(z)

p(x)
= p(x,z)

p(x)
such

that we obtain the log likelihood logp(x):

KL(q(z)||p(z|x) =

= −
∑
z

q(z) · log
p(x,z)
p(x)

q(z)

= −
∑
z

q(z) · log(
p(x, z)

q(z)
· 1

p(x)
)

= −
∑
z

q(z) · [logp(x, z)
q(z)

+ log
1

p(x)
]

= −
∑
z

q(z) · logp(x, z)
q(z)

+
∑
z

q(z) · logp(x)

= −
∑
z

q(z) · logp(x, z)
q(z)

+ logp(x) ·
∑
z

q(z)

= −
∑
z

q(z) · logp(x, z)
q(z)

+ logp(x)

= Ez∼q(z)[−log
p(x, z)

q(z)
] + logp(x)

(A.16)

128 APPENDIX A. APPENDIX

Notice, we used the following rules:
a
b
c
d

= ad
bc

, log(ab) = log(a) + log(b),

log a
b

= log(a)− log(b), log(1) = 0,
∑

z q(z) = 1 and
∑

z zx = x ·
∑

z z.

Thus, the likelihood of the data can be decomposed into a KL divergence
term KL(q(z)||p(z|x)) to be minimized and a variational lower bound term

L = Ez∼q(z)[log
p(x,z)
q(z)

] to be maximized:

logp(x) = KL + L = KL(q(z)||p(z|x)) + Ez∼q(z)[log
p(x, z)

q(z)
] (A.17)

The latter term is called ”lower bound” because KL(q(z)||p(z|x) ≥ 0 and
logp(x) = KL + L so L ≤ logp(x)−KL ≤ logp(x), meaning L ≤ logp(x).
Hence, maximizing the lower bound L of another function logp(x), also
maximizes that function logp(x). As a result, we realize that maxi-
mizing the log likelihood of the data logp(x) is achieved by minimiz-
ing the KL divergence KL and maximizing the lower bound L. Recall
p(z|x) = p(x,z)

p(x)
= p(x|z)·p(z)∫

z p(x|z)·p(z)
is intractable. Instead, we may rewrite the

joint p(x, z) as p(x|z) ·p(z) in a further decomposition of the lower bound:

L = Ez∼q(z)[log
p(x, z)

q(z)
]

= Ez∼q(z)[log
p(x|z) · p(z)

q(z)
]

= Ez∼q(z)[logp(x|z) + log
p(z)

q(z)
]

= Ez∼q(z)[logp(x|z)] + Ez∼q(z)[
p(z)

q(z)
]

= Ez∼q(z)[logp(x|z)]−KL(q(z)||p(z))

(A.18)

Interestingly, this decomposition of the lower bound shows that maxi-
mizing the lower bound is equivalent to maximizing the log likelihood
logp(x|z) and mimimizing KL divergence between our approximate pos-
terior q(z) and a prior p(z). By revelation, we can pick a tractable distri-
bution from a known family of distributions (e.g. Gaussian) as our prior
p(z) and make our approximate posterior q(z|x) close to p(z), which is
tractable and thus enables us to efficient optimization.

From graphical model to autoencoder

In the graphical model shown previously, we have two random variables
x ∼ p(x|z) and z ∼ p(z). Now, we will assume that a distribution
q(z|x) exists. We already know that the posterior p(z|x) is hard to com-
pute. Thus, we instead want to compute q(z|x) ≈ p(z|x) by minimizing
KL(q(z|x)||p(z|x)) and maximizing the variational lower bound L in equa-
tion A.17. We showed that maximizing this lower bound is equivalent to
minimizing KL divergence between our approximate posterior q(z|x) and
a tractable prior p(z) and maximizing the log likelihood of the data in
equation A.18.

A.3. APPROACH 129

Now, we can assume p(x|z) and q(z|x) are approximated with neural
networks. The approximate posterior is parameterized with an encoder
neural network qφ(z|x) and the likelihood p(x|z) is parameterized with a
decoder neural network pθ(x|z). Now, the encoder objective is to find
q(z|x) ≈ p(z|x) via KL divergence and the decoder objective is to max-
imize the log likelihood of the data, which together maximize the lower
bound L.

Interestingly, we can pick a distribution of our choice to represent p(z).
This is usually taken to be a tractable standard normal (noise):

z ∼ N(0, I) (A.19)

The encoder will then try to make the distribution in latent space similar
to the standard normal distribution just picked.

For the decoder, we may observe that p(x|z) is a deterministic function
that maps a sampled latent vector z to a predicted reconstruction x̂ such
that x̂ ≈ x. Normally, we assume the actual observations follow a Gaus-
sian distribution when given the reconstructions:

p(x|x̂) = e−|x−x̂|
2 ⇐⇒ logp(x|x̂) = |x− x̂|2 (A.20)

Consequently, maximizing the expected log likelihood Ez∼q(z)[logp(x|z] is
equivalent to minimizing the L2 squared euclidean reconstruction error
|x− x̂|2.

Compared to a traditional autoencoder that minimize |x − x̂|2, we now
minimize this, in addition to the KL divergence term K(qφ(z|x)|pθ(z|x)).
Thus, the KL divergence term functions as a regularizer to the autoen-
coder such that the distribution of latent variables has a certain form
similar to that of a tractable prior distribution p(z) picked by us.

Thus, we need to design the encoder network φ(z|x) such that it does
not generate a latent code z ∈ Rd but instead the parameters of the
distribution p(z). We have assumed z follows a normal distribution in
equation A.19 parameterized by means µ ∈ Rd and standard deviations
σ ∈ Rd. A common choice of the form of qφ(z|x) is a multivariate Gaussian
with a diagonal covariance:

z ∼ qφ(z|x) = N(z|µ,Σ = σ2I) (A.21)

The covariance matrix of the encoder distribution is diagonal to reduce
its parameter space from d2 to d parameters:

Σ =

σ1 · · · 0

0
. . . 0

0 · · · σd

 (A.22)

Thus, the idea is to use the encoder qφ(z|x) to generate the means µ and
standard deviations σ of our tractable prior target distribution p(z) and
sample Nz = 64 latent vectors from z ∼ N(µ, σI) as input to the decoder
(see figure 4.4). The reason why it is a generative model is because we
sample latent vectors z and feed the decoder P (x|z) with these to generate
reconstructions similar to real observations.

130 APPENDIX A. APPENDIX

Maximum Likelihood Estimation

In our case, we have a probabilistic decoder model pθ(x|z) controlled by a
set of parameters θ. The decoder model provides a probability distribution
over example observations x (frames), which are assumed independent and
identically distributed (i.i.d.). The Maximum Likelihood (ML) estimation
procedure is used to pick the parameters θ that maximize the probabil-
ity that the decoder model will generate the training data. One usually
exploits the monotonically increasing property of the logarithm and in-
stead optimizes the log likelihood that is more convenient to work with
than the likelihood, since it can convert a product of factored distribu-
tions into a sum that may analytically manipulated or enable parallel loss
computations. In cases where little data is available, the ML estimation
of parametric models performs poorly compared to Bayesian inference (in
which one makes new predictions by integrating over all possible param-
eter valeus of θ).

Intuitively, we normally want do to maximum likelihood estimation in
which we find the parameters θ such that the likelihood of our observations
is maximized, meaning the model pθ(X) will likely generate the training
data p(X). The expected likelihood of our data for a single sample is:

L(θ|x) = pθ(x) (general form)

Li(θ, φ|xi) = −Exi∈X [Ez∼qφ(z|x)[pθ(x̂i|z)]]
(A.23)

The expected log likelihood for a single sample is given by:

LL(θ|x) = logpθ(x) (general form)

Li(θ, φ|xi) = Exi∈X [Ez∼qφ(z|x)[logpθ(x̂i|z)]]
(A.24)

The goal is to maximize likelihood function, which is similar to maximizing
the expected log likelihood function. In order to use this objective as a
loss function to be optimized with gradient descent, we use the expected
negative log likelihood to be minimized:

θ∗ML = argmaxθLL(θ|X) (general form)

= argminθ − LL(θ|X)

= argminθExi∈X [Ez∼qφ(z|x)[−logpθ(x̂i|z)]]

(A.25)

Notice, our VAE loss function (see 4.5) strives to minimize KL(qφ(z|x)||p(z))
and Eqφ(z|x)[−logpθ(x|z)], which is the exact equivalent to minimizing the
above, meaning we maximize the likelihood of the data. Ultimately, this
verifies the choice of objective function when trying to learn a generative
VAE model that is able to create images similar to real training examples.

A.3. APPROACH 131

A.3.3 Derivation of KL Divergence between two Mul-
tivariate Gaussian Distributions

Recall the KL divergence between two distributions P and Q is defined as

DKL(P ||Q) = EP [log
P

Q
] (A.26)

Also, the probability density function for a multivariate Gaussian (normal)
distribution with mean µ and covariance matrix Σ is

p(x) =
1

(2π)n/2|Σ1/2
exp(−1

2
(x− µ)TΣ−1(x− µ)) (A.27)

The KL divergence for two multivariate Gaussians inRn, P1 = N(x|µ1,Σ1)
and P2 = N(x|µ2,Σ2) is

DKL(P1||P2)

= EP1 [logP1 − logP2]

=
1

2
EP1 [−log|Σ1| − (x− µ1)TΣ−1

1 (x− µ1) + log|Σ2|+ (x− µ2)TΣ−1
2 (x− µ2)]

=
1

2
log
|Σ2|
|Σ1|

+
1

2
EP1 [−(x− µ1)TΣ−1

1 (x− µ1) + (x− µ2)TΣ−1
2 (x− µ2)]

=
1

2
log
|Σ2|
|Σ1|

+
1

2
EP1 [−tr(Σ−1

1 (x− µ1)(x− µ1)T + tr(Σ−1
2 (x− µ2)(x− µ2)T)]

=
1

2
log
|Σ2|
|Σ1|

+
1

2
EP1 [−tr(Σ−1

1 Σ1) + tr(Σ−1
2 (xxT − 2xµT2 + µ2µ

T
2))]

=
1

2
log
|Σ2|
|Σ1|
− 1

2
n+

1

2
tr(Σ−1

2 (Σ1 + µ1µ
T
1 − 2µ2µ

T
1 + µ2µ

T
2))

=
1

2
(log
|Σ2|
|Σ1|
− n+ tr(Σ−1

2 Σ1) + tr(µT1 Σ−1
2 µ1 − 2µT1 Σ−1

2 µ2 + µT2 Σ−1
2 µ2))

=
1

2
(log
|Σ2|
|Σ1|
− n+ tr(Σ−1

2 Σ1) + (µ2 − µ1)TΣ−1
2 (µ2 − µ1)

(A.28)

132 APPENDIX A. APPENDIX

These are the rules used in the derivation:

log(ab) = log(a) + log(b)

log(ex) = x

log
a

b
= loga− logb

(a− b)2 = a2 + b2 − 2ab

|AB| = |A||B| =⇒ |An| = |A|n

cov(x, x) = var(x)E[(x− µ)(x− µ)T] = E[xxT]− µµT

|Σ|1/2 = |Σ1/2| = 1

2
|Σ| since Σ = σ2I is diagonal

tr(A) =
n∑
i=0

aii

tr(c) = c, c ∈ R
tr(I) = n

tr(A) = tr(AT)

tr(AB) = tr(BA)

tr(A+B) = tr(A) + tr(B)

tr(ABC) = tr(BCA) = tr(CAB)

tr(aTa) = tr(aaT)

xTAx = tr(xTAx) = tr(xxTA) = tr(AxxT) (”trace trick”)

(A.29)

A.3.4 Closed Form Derivation of KL Divergence be-
tween Multivariate Gaussian and Standard Nor-
mal

We showed the following derivation of KL divergence between two multi-
variate Gaussian distributions:

KL(P1||P2) = E[logP1−logP2] =
1

2
(log
|Σ2|
|Σ1|
−n+tr(Σ−1

2 Σ1)+(µ2−µ1)TΣ−1
2 (µ2−µ1)

(A.30)

Suppose P1 = q(z|x) = N(z|µ,Σ = σ2I) and P2 = P (z) = N(0, I) so our
VAE uses µ1 = µ,Σ1 = Σ, µ2 = ~0,Σ2 = I.

A.3. APPROACH 133

The KL divergence between such a multivariate Gaussian distribution and
standard normal distribution has a closed form:

KL(q(z|x)||p(z|x))

=
1

2
(log
|Σ2|
|Σ1|
− n+ tr(Σ−1

2 Σ1) + (µ2 − µ1)TΣ−1
2 (µ2 − µ1)

=
1

2
[log
|I|
|Σ|
− n+ tr(I−1Σ) + (~0− µ)T I−1(~0− µ)]

=
1

2
[log

1

|Σ|
− n+ tr(Σ) + µTµ]

=
1

2
[−log|Σ| − n+ tr(Σ) + µTµ]

=
1

2
[−log

∏
i

σ2
i − n+

∑
i

σ2
i +

∑
i

µ2
i]

=
1

2
[−

n∑
i

logσ2
i − n+

∑
i

σ2
i +

∑
i

µ2
i]

=
1

2
[−(

∑
i

logσ2
i + 1) +

∑
i

σ2
i +

∑
i

µ2
i]

= −1

2
[
n∑
i=1

logσ2
i + 1−

∑
i

σ2
i −

∑
i

µ2
i]

= −1

2

n∑
i=1

logσ2
i + 1− σ2

i − µ2
i

(A.31)

In PyTorch, that corresponds to the loss function:

−1

2
torch.sum(logvar + 1 - logvar.exp() - mean.pow(2)) (A.32)

The following rules were used:

I = I−1

log(1) = 0

log
a

b
= loga− logb

|Σ| =
∏
i

σ2
i diagonal covariance matrix∑

i

= 1n1 = n

(A.33)

134 APPENDIX A. APPENDIX

A.3.5 MDRNN Loss: GMM Log Likelihood Func-
tion with logsumexp trick

LL(θ|Z)

= LL(π, µ,Σ|z1, . . . , zn)

= logp(z1, . . . , zn|π, µ,Σ)

= log(
n∏
i=1

p(zi|π, µ,Σ)(IID)

=
n∑
i=1

logp(zi|π, µ,Σ)

=
n∑
i=1

log(
K∑
k=1

πk ·N(zi|µk,Σk))

=
n∑
i=1

log(
K∑
k=1

Ak), Ak = πkN(zn|πk,Σk)

=
n∑
i=1

log(
K∑
k=1

exp(logAk))

=
n∑
i=1

[logAm + log(
K∑
k=1

exp(logAk − logAm)], Am = maxAk, k ∈ 1, . . . , K

=
n∑
i=1

[logπm −
D

2
log2π − 1

2
log|Σm| −

1

2

n∑
i=1

(xmi − µm)TΣ−1
m (xmi − µm)] + · · ·

+
n∑
i=1

[log(
K∑
k=1

exp(logAk − logAm)]

(A.34)

A.4. EXPERIMENTS 135

A.4 Experiments

A.4.1 NTBEA Tuning: Planning Parameter Expla-
nations

Horizon - A fixed value that defines how far the planning algorithms plans
ahead. We decided to cap the upper bound to 20 as it would provide a
somewhat far lookahead while maintaining a low run time during tuning.

Generations - A fixed value that defines the number of iterations a popu-
lation (RHEA) or individual (RMHC) is evolved and evaluated. Similarly
to the horizon parameter, the upper bound is capped to 20 generations to
maintain a feasible run time during tuning.

Shift Buffer - Population management technique introduced by (Gaina,
Simon M. Lucas, and Pérez-Liébana 2013). If Shift Buffer is enabled, each
individual’s final genome at timestep t is retained at timestep t + 1 where
the first action is popped, and a new random action is appended to the
end of the genome. Otherwise, if Shift Buffer is disabled, the population
(RHEA) or individual (RMHC) is randomly initialized for timestep t +
1. Shift Buffer’s purpose is to minimize loss of information gained from
previous planning steps by avoiding to repeat the entire search process
from scratch at each game step.

Fitness assignment - The undiscounted sum of simulated reward when
evaluating an individual is assigned as the fitness. Arguably, discount-
ing the rewards while prioritizing immediate rewards may likewise yield
promising results since the world model becomes more uncertain when
looking further into the future. We did run some manual tests with dis-
counted rewards but did not see any significant improvements. Thus we
decided to use the undiscounted implementation due to simplicity.

Mutation Type - There are 3 types of mutation operators that have
been implemented.

Uniform-1 picks uniformly one single action from the genome and mutate
it with another random action.

Uniform-All goes through each action with a mutation probability of 1/L
where L is the length of the horizon (number of actions).

136 APPENDIX A. APPENDIX

Figure A.4: ConvVAE Architecture (Ha and Schmidhuber 2018a)

A.4. EXPERIMENTS 137

Uniform-Subset selects uniformly N number of actions to mutate where
N is a random integer between 1 and L that defines the size of the subset.
The mutation operator is only applicable for RHEA if the genetic operator
is Mutation or Crossover + Mutation; otherwise the mutation operator
will not be in use.

Population - RHEA - Fixed value that defines the number of individuals
within a population that is evaluated and evolved with RHEA. Since each
individual is evaluated in parallel, the upper bound is set to 16, which is
the number of logical threads our system has to avoid CPU scheduling.

Genetic Operator - RHEA - There are 3 genetic operators that are
implemented.

Crossover will only use crossover to introduce diversity in the population
for each generation.

Mutation will only use mutations to introduce diversity in the population
for each generation.

Crossover + Mutation uses both mutation and crossover to introduce
diversity in the population.

Selection Type - RHEA - The Selection operator defines how two
individuals are selected for crossover to produce an offspring.

Uniform does not put any pressure on fitness but only selects two parents
uniformly amongst the population for crossover.

Tournament selects a percentage of the population (t = 0.5) uniformly
without replacement and chooses the two best individuals as parents.

Roulette selection chooses individuals with probabilities equal to their
fitness. Individuals with high fitness have an increased probability of
being selected. However, the fitness of an individual can be negative
due to negative rewards; thus, we normalize all individuals’ fitness to
be nonnegative by summing the absolute value of the smallest fitness to
all the other individuals’ fitness. Yet, the worst performing individual
would have a fitness of zero after normalization, hence by adding a small
positive value y = 0.01 to all individuals’ fitness ensures that there is a
slight chance for the worst performing individual of being selected.

Rank selection sorts the individuals according to their fitness. Each indi-
vidual is then assigned a rank such that the lowest fitness individual would
have rank 1, second lowest would have rank 2 and up to n where n is the
rank of the individual with the highest fitness. Individuals are then chosen
based on the probabilities of their ranks and not by their fitness unlike in
roulette selection. This reduces the selection pressure by minimizing the
differences in fitness. Individuals in roulette selection with extremely high
fitness values are most likely getting constantly picked, thus undermining
the rest of the population. Rank selection ignores extreme fitness values
due to ranks being used as probabilities instead of fitness.

138 APPENDIX A. APPENDIX

Crossover Type - RHEA - The Crossover operator defines how two par-
ents’ genomes are combined where the outcome is the offspring’s genome.

Uniform crossover selects for each action either of the parents’ actions
with equal probability.

n-point (1, 2-point) crossover randomly selects n fixed points, which would
split the parents’ genomes into n+1 subsections. The genome of the off-
spring is then formed by alternating between the parents’ subsections. We
use 1 and 2 points as options with n-point crossover. Finally the crossover
operator is only applicable when the genetic operator is either Crossover
or Crossover-Mutation.

Preliminary Tests

Model D and E Passive Rollouts

Model D and Model E was an initial attempt to improve the planning
by adding 5k passive rollouts to see if it was possible to reinforce the
negative reward signal of standing still due to the high reward signal of
passiveness seen in Model C.

Disappointingly, the additional passive data dropped the performance of
RMHC and RHEA. RMHC saw up to 85 percent performance drop and
RHEA had up to 42 performance drop. Further inspection showed that
both Model D and E still had an incorrect rank order of rewards which is
likely the reason of the performance drop as shown on figure A.5.

Figure A.5: Histogram of model C-E average reward signal when driving
at different speeds. The additional passive data (D and E) proved to not
mitigate the incorrect rank order from model C but had worsened the
overall performance of the agent

A.4. EXPERIMENTS 139

Model J-K: Additional turn data

Based on the previous results, model I performed best in the preliminary
results. However, the agent still struggled with right turns, and S-turns,
which is a combination of left and right turns as it seemed to consistently
turn left. Hence we tried to improve Model I by including additional
rollouts that only contained turn sequences with the expectation that it
would improve the reward signal during turns. Disappointingly, the ad-
ditional turn did not improve anything but instead dropped the planning
performance. Manually parameter tuning of the planning algorithms with
Model I did not yield any significant results.

However, later beyond the preliminary experiments, we implemented sub-
set mutation which mutates a random subset of genes. Using the new
mutation method with RHEA, the agent was able to complete the right
turns with Model I.

Unsurprisingly, this proved that the preliminary parameter configuration
for RHEA led to the agent getting frequently stuck in a local maxima
space with Model I. The change in mutation type allowed the agent to
escape the local maxima space by using a mutation method that may have
introduced greater diversity within the population. Thus the preliminary
planning parameters are not a silver bullet configuration that is optimally
applicable to all the models which is later discussed in the next section.

Bibliography

McCloud, Scott (1993). McCloud: Understanding Comics. url: https:
//en.wikipedia.org/wiki/Understanding_Comics.

Yannakakis, Georgios N. and Julian Togelius (2018). Artificial Intelligence
and Games. url: http://gameaibook.org/book.pdf.

Mnih, Volodymyr et al. (2014). Playing Atari with Deep Reinforcement
Learning. url: https://arxiv.org/pdf/1312.5602v1.pdf.

Schrittwieser, Julian et al. (2020). Mastering Atari, Go, Chess and Shogi
by Planning with a Learned Model. url: https://arxiv.org/pdf/
1911.08265.pdf.

Russell, Stuart J. and Peter Norvig (2009). Artificial Intelligence - A Mod-
ern Approach (3rd Edition). Harlow, Essex: Pearson.

Bolander, Thomas (2019). What is AI - and where is it heading? Part II:
Symbolic and subsymbolic AI. url: http://www.imm.dtu.dk/~tobo/
dighumlab2.pdf.

Mitchell, Tom M. (1997). Machine learning. New York, United States:
McGraw-Hill.

Bishop, Cristopher M. (2006). Pattern Recognition and Machine Learning.
Manhattan, New York City: Springer.

Fortmann-Roe, Scott (2012). Understanding the Bias-Variance Tradeoff.
url: http://scott.fortmann-roe.com/docs/BiasVariance.html.

Kapoor, Sanyam (2018). Policy Gradients in a Nutshell. url: https:

//towardsdatascience.com/policy-gradients-in-a-nutshell-

8b72f9743c5d.
Sutton, Richard S. and Andrew G. Barto (2018). Reinforcement Learning -

An Introduction (2nd Edition). Cambridge, Massachusetts: MIT Press.
Kochenderfer, Mykel J. (2014). Decision Making uner Uncertainty. url:
https://web.stanford.edu/~mykel/pomdps.pdf.

Silver, David (2020). Lecture 8: Integrating Learning and Planning. url:
https://www.davidsilver.uk/wp- content/uploads/2020/03/

dyna.pdf.
Github, Open AI Gym (2019). Make a copy of current env. url: https:
//github.com/openai/gym/issues/1292.

Eiben, A.E. and J.E. Smith (2015). Introduction to Evolutionary Comput-
ing. Manhattan, New York City: Springer.

Perez, Diego, Simon M. Lucas, et al. (2013). Rolling Horizon Evolution
versus Tree Search for Navigation in Single-Player Real-Time Games.
url: https://dl.acm.org/doi/pdf/10.1145/2463372.2463413.

140

BIBLIOGRAPHY 141

Gaina, Raluca D., Simon M. Lucas, and Diego Pérez-Liébana (2017). Pop-
ulation Seeding Techniques for Rolling Horizon Evolution in General
Video Game Playing. url: https://arxiv.org/pdf/1704.06942.pdf.

Gaina, Raluca D., Simon M. Lucas, Diego Pérez-Liébana, et al. (2017).
Introducing real world physics and macro-actions to general video game
ei. url: https://www.researchgate.net/publication/320745695_
Introducing_real_world_physics_and_macro-actions_to_general_

video_game_ai.
Deepa, S.N. Sivanandam S.N. (2008). Introduction to Genetic Algorithms.

Manhattan, New York City: Springer.
Kunanusont, Kamolwan, Raluca D. Gaina, and et.al. (2017). The N-

Tuple Bandit Evolutionary Algorithm for Automatic Game Improve-
ment. url: https://arxiv.org/pdf/1705.01080.pdf.

Lucas, Simon M, Jialin Liu, and Diego Perez-Liebana (2018). The N-
Tuple Bandit Evolutionary Algorithm for Game Agent Optimisation.
url: https://arxiv.org/pdf/1802.05991.pdf.

Dalgaard, Randi (2019). CS6501: Deep Learning for Visual Recognition -
Neural Networks (University of Virginia). url: https://slideplayer.
com/slide/16362305/.

Alpaydin, Ethem (2014). Introduction to Machine Learning. Cambridge,
Massachusetts: MIT Press.

Goodfellow, Ian, Yoshua Bengio, and Aaron Courville (2016). Deep Learn-
ing. Cambridge, Massachusetts: MIT Press.

Weng, Lilian (2018a). From Autoencoder to Beta-VAE. url: https://
lilianweng.github.io/lil-log/2018/08/12/from-autoencoder-

to-beta-vae.html.
Yau, Jeffrey (2018). Vanilla Reccurrent Neural Network (RNN). url:
https://www.slideshare.net/databricks/time-series-forecasting-

using-recurrent-neural-network-and-vector-autoregressive-

model-when-and-how-with-jeffrey-yau.
Buesing, Lars et al. (2018). Learning and Querying Fast Generative Models

for Reinforcement Learning. url: https://arxiv.org/pdf/1802.

03006.pdf.
Ha, David and Jürgen Schmidhuber (2018a). World Models. url: https:
//arxiv.org/pdf/1803.10122.pdf.

– (2018b). World Models (Github). url: https://worldmodels.github.
io/.

Risi, Sebastian and Kenneth O. Stanley (2019). Deep Neuroevolution of
Recurrent and Discrete World Models. url: https://arxiv.org/pdf/
1906.08857.pdf.

Ha, David, Danijar Hafner, et al. (2019). Learning Latent Dynamics for
Planning from Pixels. url: https://arxiv.org/abs/1811.04551.

Hafner, Danijar et al. (2020). Dream to Control: Learning Behaviors By
Latent Imagination. url: https://arxiv.org/pdf/1912.01603.pdf.

Tallec, Corentin, Léonard Blier, and Diviyan Kalainathan (2018). Pytorch
implementation of the ”WorldModels”. url: https://github.com/
ctallec/world-models.

142 BIBLIOGRAPHY

Bamford, Chris (2019). NTBEA Implementation in python. url: https:
//github.com/bam4d/NTBEA.

Kingma, Diederik P. (2014). Auto-Encoding Variational Bayes. url: https:
//arxiv.org/pdf/1312.6114.pdf.

Doersch, Carl (2016). Tutorial on Variational Autoencoders. url: https:
//arxiv.org/pdf/1606.05908.pdf.

Weng, Lilian (2018b). From Autoencoder to Beta-VAE. url: https://
lilianweng.github.io/lil-log/2018/08/12/from-autoencoder-

to-beta-vae.html.
Graves, Alex, Santiago Fernández, and Jürgen Schmidbauer (2013). Multi-

Dimensional Recurrent Neural Networks. url: https://arxiv.org/
pdf/0705.2011.pdf.

Ellefsen, Kai Olav, Charles Patrick Martin, and Jim Torresen (2019). How
do MD-RNNs predict the future? url: https://arxiv.org/pdf/1901.
07859.pdf.

Gaina, Raluca D., Sam Devlin, et al. (2020). Rolling Horizon Evolutionary
Algorithms for General Video Game Playing. url: https://arxiv.
org/pdf/2003.12331.pdf.

Perez, Diego, Simon Lucas, et al. (2012). A Survey of Monte Carlo Tree
Search Methods. url: http : / / www . diego - perez . net / papers /

MCTSSurvey.pdf.
Dettmers, Tim (2019). Which GPU(s) to Get for Deep Learning. url:
https://timdettmers.com/2019/04/03/which-gpu-for-deep-

learning/.
Gregor, Karol et al. (2019). Shaping Belief States with Generative Environ-

ment Models for RL. url: https://arxiv.org/pdf/1906.09237.pdf.
Kanerva, Pentti (1988). Sparse Distributed Memory. Cambridge, Mas-

sachusetts: MIT Press.
Altosaar, Jaan (2020). Tutorial - What is a variational autoencoder? url:
https : / / jaan . io / what - is - variational - autoencoder - vae -

tutorial/.
Blei, David M., Alp Kucukelbir, and Jon D. McAuliffe (2018). Variational

Inference: A Review for Statisticians. url: https://arxiv.org/pdf/
1601.00670.pdf.

Gaina, Raluca D., Simon M. Lucas, and Diego Pérez-Liébana (2013).
Rolling Horizon Evolutionary Algorithms for General Video Game Play-
ing. url: https://www.researchgate.net/publication/340271118_
Rolling_Horizon_Evolutionary_Algorithms_for_General_Video_

Game_Playing.

